Degradation of human atrial natriuretic peptide by human brain membranes

Human atrial natriuretic peptide (Ser 99-Tyr 126) was rapidly degraded by both choroid plexus and hypothalamic membranes with a complex pattern of cleavage. The use of protease inhibitors allowed a preliminary characterization of the enzymes involved in the hydrolysis of the Ser-Phe and Phe-Arg bond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurochemistry international 1988, Vol.12 (3), p.367-373
Hauptverfasser: Deschodt-Lanckman, M., Vanneste, Y., Michaux, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human atrial natriuretic peptide (Ser 99-Tyr 126) was rapidly degraded by both choroid plexus and hypothalamic membranes with a complex pattern of cleavage. The use of protease inhibitors allowed a preliminary characterization of the enzymes involved in the hydrolysis of the Ser-Phe and Phe-Arg bonds of iodine-labelled atrial natriuretic peptide. The C-terminal tripeptide was generated by three different enzymatic activities acting on the Ser-Phe bond: endopeptidase 24.11, a phosphoramidon-insensitive metallopeptidase and a thiol protease. Peptides like substance P, neurotensin, bradykinin inhibited the cleavage of the Ser-Phe bond of atrial natriuretic peptide. The C-terminal tripeptide was further degraded by aminopeptidases. Cleavage of the C-terminal dipeptide was inhibited by aprotinin, suggesting the contribution of brain kallikrein in the formation of this metabolite. These results show that many different proteases were involved in the hydrolysis of the C-terminal sequence of atrial natriuretic peptide, at least in vitro and underline the complexity of neuropeptide catabolism by brain preparations.
ISSN:0197-0186
1872-9754
DOI:10.1016/0197-0186(88)90176-3