Effects of antibiotics and oil on microbial profiles and fermentation in mixed cultures of ruminal microorganisms
Ionophores and supplemental fat are fed to lactating cows to improve feed efficiency. Their effect on rumen fermentation is similar, but less is known about their impact on rumen microbes. The objective of this study was to determine the effects of monensin (M), bacitracin (B), and soybean oil (O) o...
Gespeichert in:
Veröffentlicht in: | Journal of dairy science 2009-09, Vol.92 (9), p.4467-4480 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ionophores and supplemental fat are fed to lactating cows to improve feed efficiency. Their effect on rumen fermentation is similar, but less is known about their impact on rumen microbes. The objective of this study was to determine the effects of monensin (M), bacitracin (B), and soybean oil (O) on microbial populations. Mixed cultures of rumen microbes were incubated in 5 dual-flow continuous fermentors and fed 13.8g of alfalfa hay pellets daily (DM basis) for 16 d. All fermentors were allowed to stabilize for 4 d. From d 5 to 10, two fermentors received O (5% of diet DM), one fermentor received M (22mg/kg), and one received B (22mg/kg). From d 11 to 16, the 2 fermentors receiving O also received either M (OM) or B (OB) and O was included in the fermentors receiving M (MO) and B (BO). One fermentor served as the control and received 100% alfalfa pellets throughout the experiment. Each run was replicated 3 times. Samples were taken at 2h after the morning feeding on d 4, 10, and 16 and were analyzed for bacterial populations using terminal restriction fragment length polymorphism. Volatile fatty acid concentration, methane production, and pH in the control cultures were not affected by time and remained similar during the entire experiment. The M and O treatments reduced molar concentration of acetate, increased concentration of propionate, and decreased methane production. Bacitracin did not alter acetate or propionate concentration, but reduced methane production. All 3 treatments (M, B, and O) altered the fragment patterns of microbial profiles. In contrast, treatments MO, OM, BO, and OB had little effect on culture fermentation despite differences in the patterns of microbial fragments. The terminal restriction fragment length polymorphism data suggest that microbial adaptation to the in vitro system in the control fermentor occurred within 4 d. |
---|---|
ISSN: | 0022-0302 1525-3198 |
DOI: | 10.3168/jds.2008-1841 |