Carboxy terminus of secreted phosphoprotein-24 kDa (spp24) is essential for full inhibition of BMP-2 activity

Secreted phosphoprotein‐24 kDa (spp24) is a bone morphogenetic protein (BMP)‐binding protein isolated from bone. It exists in a number of size forms and is hypothesized to function as a BMP latency protein and/or a “slow release” mechanism for BMPs involved in bone turnover and repair. We have exami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of orthopaedic research 2010-09, Vol.28 (9), p.1200-1207
Hauptverfasser: Brochmann, Elsa J., Simon, Robert J., Jawien, Janusz, Behnam, Keyvan, Sintuu, Chananit, Wang, Jeffrey C., Murray, Samuel S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Secreted phosphoprotein‐24 kDa (spp24) is a bone morphogenetic protein (BMP)‐binding protein isolated from bone. It exists in a number of size forms and is hypothesized to function as a BMP latency protein and/or a “slow release” mechanism for BMPs involved in bone turnover and repair. We have examined the hypothesis that proteolytic modification of the C‐terminus of spp24 affects its BMP‐2–binding properties and bioactivity in the BMP‐2–stimulated ectopic bone forming bioassay. Three different size forms of recombinant spp24 that correspond to predicted 18.1 kDa, 16.0 kDa, and 14.5 kDa proteolytic products were compared to full‐length (fl) spp24. One of these forms (spp18.1) we hypothesize to be the protein which Urist initially, but apparently inaccurately, called “BMP.” Only full‐length spp24 completely inhibited BMP‐2–induced bone formation. The 18.1 kDa truncated isoform of spp24 which we hypothesize to be Urist's protein did not. The inhibitory capacity of the proteins was correlated with their kinetic constants, assessed by surface plasmon resonance. At the highest, inhibitory, dose of spp24 and its derivatives, kd (“stability”) best predicted the extent of ectopic bone formation whereas at the lowest dose, which was not inhibitory, ka (“recognition”) best predicted the extent of ectopic bone formation. We conclude that proteolytic processing of spp24 affects the interaction of this protein with BMP‐2 and this affects the function of the protein. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:1200–1207, 2010
ISSN:0736-0266
1554-527X
DOI:10.1002/jor.21102