Expression of peptide NAP in rat retinal Müller cells prevents hypoxia-induced retinal injuries and promotes retinal neurons growth
Abstract NAP (NAPVSIPQ) is a short peptide derived from activity-dependent neuroprotective protein (ADNP) sequence, whose potent and direct neuroprotective capabilities have been widely accepted. However, due to the high risk and inconvenience of intraocular injections, NAP is difficult to be clinic...
Gespeichert in:
Veröffentlicht in: | Biomedicine & pharmacotherapy 2010-07, Vol.64 (6), p.417-423 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract NAP (NAPVSIPQ) is a short peptide derived from activity-dependent neuroprotective protein (ADNP) sequence, whose potent and direct neuroprotective capabilities have been widely accepted. However, due to the high risk and inconvenience of intraocular injections, NAP is difficult to be clinically administered as therapeutic agent in treating retinal diseases. Currently, stable transfection of this octapeptide into cells has not been reported, partly because of its small size and lacking of 5’ signal sequence. Here, we have developed a novel NT4-NAP fusion gene by attaching the 5’ nonfunctional preproregion of neurotrophin 4 (NT4) to NAP cDNA. Recombinant adeno-associated virus was established to introduce NT4-NAP construct into cultured rat retinal Müller cells (RMC), resulting in sustained high level NAP production from stable transfection. Functional analyses of RMC cells transfected with NAP revealed the remarkably reduced cytotoxicity and apoptosis of the cells under hypoxia. Furthermore, coculturing of transfected RMC-NAP cells with primary rat retinal neural cells offer marked protection to the latter against hypoxia induced cellular damages. Together our data indicate that stable transfection of NAP into retinal Müller cells with constant NAP production is possible. NAP produced from cellular transfection maintained its biological neuroprotective activities. This targeted gene expression may provide an effective treatment for retinal diseases in the near future. |
---|---|
ISSN: | 0753-3322 1950-6007 |
DOI: | 10.1016/j.biopha.2010.01.016 |