Phosphoinositide-specific phospholipase C-delta 1: effect of monolayer surface pressure and electrostatic surface potentials on activity

We added phospholipase C-delta 1 (PLC-delta) to the aqueous subphase beneath monolayers formed from mixtures of phosphatidylinositol 4,5-bisphosphate (2% PIP2), phosphatidylserine (33% PS), and phosphatidylcholine (65% PC) and then measured the initial rate of hydrolysis of PIP2 after addition of 10...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1992-12, Vol.31 (51), p.12748-12753
Hauptverfasser: Rebecchi, M, Boguslavsky, V, Boguslavsky, L, McLaughlin, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We added phospholipase C-delta 1 (PLC-delta) to the aqueous subphase beneath monolayers formed from mixtures of phosphatidylinositol 4,5-bisphosphate (2% PIP2), phosphatidylserine (33% PS), and phosphatidylcholine (65% PC) and then measured the initial rate of hydrolysis of PIP2 after addition of 10 microM free calcium. Increasing the surface pressure of the monolayer, pi, from 20 to 40 mN/m decreased the rate of hydrolysis 200-fold. The rate of hydrolysis depends exponentially on the surface pressure: rate alpha exp(-pi Ap/kT) where k is the Boltzmann constant, T is the temperature, and Ap congruent to 1 nm2. Similar results were obtained with different (1 and 100 microM) free [Ca2+] and with different mole fractions of PIP2. The results are consistent with a model in which PLC-delta binds to PIP2 with high affinity (Ka = 10(6) M-1) in the absence of calcium ions [Rebecchi, M.J., Peterson, A., & McLaughlin, S. (1993) Biochemistry (preceding paper in this issue)], and a portion of PLC-delta of area Ap inserts into the monolayer doing work = pi Ap prior to hydrolysis of PIP2. Removing the monovalent acidic lipid PS from the monolayer decreases the activity of PLC-delta 4-fold, this effect of PS on activity is similar to the effect of monovalent acidic lipids on the binding of PLC-delta to PIP2 in bilayer vesicles.
ISSN:0006-2960
DOI:10.1021/bi00166a006