Nonlinearity in eardrum vibration as a function of frequency and sound pressure

It is generally accepted that the middle ear acts mainly as a linear system for sound pressures up to 130 dB SPL in the auditory frequency range. However, at quasi-static pressure loads a strong nonlinear response has been demonstrated. Consequently, small nonlinear distortions may also be present i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hearing research 2010-05, Vol.263 (1), p.26-32
Hauptverfasser: Aerts, J.R.M., Dirckx, J.J.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is generally accepted that the middle ear acts mainly as a linear system for sound pressures up to 130 dB SPL in the auditory frequency range. However, at quasi-static pressure loads a strong nonlinear response has been demonstrated. Consequently, small nonlinear distortions may also be present in the middle ear response in the auditory frequency range. A new measurement method was developed to quickly determine vibration response, nonlinear distortions and noise level of acoustically driven biomechanical systems. Specially designed multisines are used for the excitation of the test system. The method is applied on a gerbil eardrum for sound pressures ranging from 90 to 120 dB SPL and for frequencies ranging from 125 Hz to 16 kHz. The experiments show that nonlinear distortions rise above noise level at a sound pressure of 96 dB SPL, and they grow as sound pressure increases. Post-mortem changes in the middle ear influence the nonlinear distortions rapidly until a stabilization occurs after approximately 3 h.
ISSN:0378-5955
1878-5891
DOI:10.1016/j.heares.2009.12.022