Effects of IL-7 on Early Human Thymocyte Progenitor Cells In Vitro and in SCID-hu Thy/Liv Mice

IL-7 is a critical component of thymopoiesis in animals and has recently been shown to play an important role in T cell homeostasis. Although there is increasing interest in the use of IL-7 for the treatment of lymphopenia caused by the HIV type 1, evidence that IL-7 may accelerate HIV replication h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2003-07, Vol.171 (2), p.645-654
Hauptverfasser: Napolitano, Laura A, Stoddart, Cheryl A, Hanley, Mary Beth, Wieder, Eric, McCune, Joseph M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:IL-7 is a critical component of thymopoiesis in animals and has recently been shown to play an important role in T cell homeostasis. Although there is increasing interest in the use of IL-7 for the treatment of lymphopenia caused by the HIV type 1, evidence that IL-7 may accelerate HIV replication has raised concerns regarding its use in this setting. We sought to identify the effects of IL-7 on human thymocyte survival and to determine the impact of IL-7 administration on in vivo HIV infection of the human thymus. Using in vitro analysis, we show that IL-7 provides potent anti-apoptotic and proliferative signals to early thymocyte progenitors. Analysis of CD34(+) subpopulations demonstrates that surface IL-7 receptor is expressed on most CD34(high)CD5(+)CD1a(-) thymocytes and that this subpopulation appears to be one of the earliest maturation stages responsive to the effects of IL-7. Thus, IL-7 provides survival signals to human thymocytes before surface expression of CD1a. CD4(+)CD8(+) thymocytes are relatively unresponsive to IL-7, although IL-7 protects these cells from dexamethasone-induced apoptosis. IL-7 has a predominantly proliferative effect on mature CD4(+)CD3(+)CD8(-) and CD8(+)CD3(+)CD4(-) thymocytes. In contrast to the in vitro findings, we observe that in vivo administration of IL-7 to SCID-hu Thy/Liv mice does not appear to enhance thymocyte survival nor does it appear to accelerate HIV infection. Given the growing interest in the use of IL-7 for the treatment of human immunodeficiency, these findings support additional investigation into its in vivo effects on thymopoiesis and HIV infection.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.171.2.645