The use of Straumann® Bone Ceramic in a maxillary sinus floor elevation procedure: a clinical, radiological, histological and histomorphometric evaluation with a 6-month healing period
Objectives: In this study, we evaluated the quality and quantity of bone formation in maxillary sinus floor elevation procedure using a new fully synthetic biphasic calcium phosphate (BCP) consisting of a mixture of 60% hydroxyapatite and 40% of β‐tricalcium phosphate (Straumann® Bone Ceramic). Mate...
Gespeichert in:
Veröffentlicht in: | Clinical oral implants research 2010-02, Vol.21 (2), p.201-208 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objectives: In this study, we evaluated the quality and quantity of bone formation in maxillary sinus floor elevation procedure using a new fully synthetic biphasic calcium phosphate (BCP) consisting of a mixture of 60% hydroxyapatite and 40% of β‐tricalcium phosphate (Straumann® Bone Ceramic).
Material and methods: A unilateral maxillary sinus floor elevation procedure was performed in six patients using 100% BCP. Biopsy retrieval for histological and histomorphometric analysis was carried out before implant placement after a 6‐month healing period.
Results: In this study, the maxillary sinus floor elevation procedure with the use of BCP showed uneventful healing. Radiological evaluation after 6 months showed maintenance of vertical height gained immediately after surgery. Primary stability was achieved with all Straumann® SLA dental implants of 4.1 mm diameter and 10 or 12 mm length. The implants appeared to be osseointegrated well after a 3‐month healing period. Histological investigation showed no signs of inflammation. Cranial from the native alveolar bone, newly formed mineralized tissue was observed. Also, osteoid islands as well as connective tissue were seen around the BCP particles, cranial from the front of newly formed mineralized tissue. Close bone‐to‐substitute contact was observed. Histomorphometric analysis showed an average bone volume/total volume (BV/TV) of 27.3% [standard deviation (SD) 4.9], bone surface/total volume (BS/TV) 4.5 mm2/mm3 (SD 1.1), trabecula‐thickness (TbTh) 132.1 μm (SD 38.4), osteoid‐volume/bone volume (OV/BV) 7.5% (SD 4.3), osteoid surface/bone surface (OS/BS) 41.3% (SD 28.5), osteoid thickness (O.Th) 13.3 μm (SD 4.7) and number of osteoclasts/total area (N.Oc/Tar) 4.4 1/mm (SD 5.7).
Conclusions: Although a small number of patients were treated, this study provides radiological and histological evidence in humans confirming the suitability of this new BCP for vertical augmentation of the atrophied maxilla by means of a maxillary sinus floor elevation procedure allowing subsequent dental implant placement after a 6‐month healing period. The newly formed bone had a trabecular structure and was in intimate contact with the substitute material, outlining the osteoconductive properties of the BCP material. Bone maturation was evident by the presence of lamellar bone.
To cite this article:
Frenken JWFH, Bouwman WF, Bravenboer N, Zijderveld SA, Schulten EAJM, ten Bruggenkate CM. The use of Straumann® Bone Ceramic in a maxil |
---|---|
ISSN: | 0905-7161 1600-0501 |
DOI: | 10.1111/j.1600-0501.2009.01821.x |