The effect of electrical stimulation on the differentiation of hESCs adhered onto fibronectin-coated gold nanoparticles
Abstract To encourage stem cell differentiation, gold nanoparticles (20 nm) were used to deliver electrical stimulation to human embryonic stem cells (hESCs) in vitro. Nano-structured gold nanoparticles were designed by coating the surface of culture dishes with gold nanoparticles using a layer-by-l...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2009-10, Vol.30 (29), p.5631-5638 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract To encourage stem cell differentiation, gold nanoparticles (20 nm) were used to deliver electrical stimulation to human embryonic stem cells (hESCs) in vitro. Nano-structured gold nanoparticles were designed by coating the surface of culture dishes with gold nanoparticles using a layer-by-layer (LBL) system. In this method, gold nanoparticles were continuously coated onto dishes by SEM analysis. Evaluation of gene modified hESCs that were subsequently attached onto fibronectin-coated gold nanoparticles revealed that the un-differentiation marker, Oct-4, was no longer present following electrical stimulation. In addition, the osteogenic markers of collagen type I and Cbfa1 increased in response to electrical stimulation, while those of hESCs were not observed without electrical stimulation. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2009.07.026 |