Expression of the longevity proteins by both red and white wines and their cardioprotective components, resveratrol, tyrosol, and hydroxytyrosol
Resveratrol increases longevity through SirT1, which is activated with NAD(+) supplied by an anti-aging enzyme PBEF. SirT1 interacts with an anti-aging transcription factor, FoxO1, which is negatively regulated by Akt. Since white wine could have similar health benefits as red wine, we determined if...
Gespeichert in:
Veröffentlicht in: | Free radical biology & medicine 2009-03, Vol.46 (5), p.573-578 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Resveratrol increases longevity through SirT1, which is activated with NAD(+) supplied by an anti-aging enzyme PBEF. SirT1 interacts with an anti-aging transcription factor, FoxO1, which is negatively regulated by Akt. Since white wine could have similar health benefits as red wine, we determined if white wine and its cardioprotective components possess anti-aging properties by feeding rats with these compounds. The hearts expressed SirT, FoxO, and PBEF in the order of white wine>resveratrol>tyrosol>hydroxytyrosol>red wine, while cardioprotection shown by reduction of infarct size and cardiomyocyte apoptosis followed a different pattern: resveratrol>red wine>hydroxytyrosol>white wine>tyrosol, suggesting the existence of different signaling mechanisms for the induction of longevity and survival. |
---|---|
ISSN: | 0891-5849 1873-4596 |
DOI: | 10.1016/j.freeradbiomed.2008.11.005 |