Ultraviolet-induced dimerization of non-adjacent pyrimidines in poly[d(A-T)]

The DNA photoproduct responsible for the ultraviolet (UV) light-induced -1 frameshift mutation remains unknown. We recently identified a UV photoproduct consisting of a cyclobutane dimer occurring between non-adjacent thymine residues in the same strand, [sequence: see text] and proposed that replic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1992-12, Vol.267 (35), p.24953-24959
Hauptverfasser: LOVE, J. D, MINTON, K. W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The DNA photoproduct responsible for the ultraviolet (UV) light-induced -1 frameshift mutation remains unknown. We recently identified a UV photoproduct consisting of a cyclobutane dimer occurring between non-adjacent thymine residues in the same strand, [sequence: see text] and proposed that replication across this unrepaired photoproduct might result in a -1 frameshift mutation since the intervening base is extrahelical. Until now this novel photoproduct has only been identified in single-stranded DNA polymers and does not occur in UV-irradiated double-stranded polymers due to conformational restraint. This observation suggested that this photoproduct could only occur in vivo in chromosomal sites that were single-stranded. In the current work the cis-syn dithymine cyclobutane dimer has been identified in the self-complementary polymer poly[d(A-T)] when UV irradiated in solution conditions (concentrated manganese chloride or 60% ethanol plus trace salts) wherein this polymer remains double-stranded but the double-helix is partially destabilized. Taken together, the current findings suggest that dipyrimidine photoproducts between non-adjacent residues on the same strand could occur in vivo in double-stranded, but partially destabilized, DNA.
ISSN:0021-9258
1083-351X
DOI:10.1016/s0021-9258(19)73990-8