Astaxanthin attenuates the UVA-induced up-regulation of matrix-metalloproteinase-1 and skin fibroblast elastase in human dermal fibroblasts

Abstract Background Repetitive exposure of the skin to UVA radiation elicits sagging more frequently than wrinkling, which is mainly attributed to its biochemical mechanism to up-regulate the expression of matrix-metalloproteinase (MMP)-1 and skin fibroblast elastase (SFE)/neutral endopeptidase (NEP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dermatological science 2010-05, Vol.58 (2), p.136-142
Hauptverfasser: Suganuma, Kaoru, Nakajima, Hiroaki, Ohtsuki, Mamitaro, Imokawa, Genji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Background Repetitive exposure of the skin to UVA radiation elicits sagging more frequently than wrinkling, which is mainly attributed to its biochemical mechanism to up-regulate the expression of matrix-metalloproteinase (MMP)-1 and skin fibroblast elastase (SFE)/neutral endopeptidase (NEP), respectively. Objective In this study, we examined the effects of a potent antioxidant, astaxanthin (AX), on the induction of MMP-1 and SFE by UVA treatment of cultured human dermal fibroblasts. Methods Those effects were assessed by real-time RT-PCR, Western blotting and enzymic activity assays. Results UVA radiation elicited a significant increase in the gene expression of MMP-1 as well as SFE/NEP (to a lesser extent) which was followed by distinct increases in their protein and enzymatic activity levels. The addition of AX at concentrations of 4–8 μM immediately after UVA exposure significantly attenuated the induction of MMP-1 and SFE/NEP expression elicited by UVA at the gene, protein and activity levels although both the UVA stimulation and the subsequent AX inhibition were greater for MMP-1 than for SFE/NEP. Analysis of the UVA-induced release of cytokines revealed that UVA significantly stimulated only the secretion of IL-6 among the cytokines tested and that AX significantly diminished only the IL-6 secretion. Conclusion These findings indicate that, based on different effective concentrations of AX, a major mode of action leading to the inhibition elicited by AX depends on inhibition of UVA effects of the reactive oxygen species-directed signaling cascade, but not on interruption of the IL-6-mediated signaling cascade. We hypothesize that AX would have a significant benefit on protecting against UVA-induced skin photo-aging such as sagging and wrinkles.
ISSN:0923-1811
1873-569X
DOI:10.1016/j.jdermsci.2010.02.009