Pulsed gate sweep strategies for hysteresis reduction in carbon nanotube transistors for low concentration NO(2) gas detection

Carbon-nanotube-based field effect transistors (CNFETs) have been employed as highly sensitive chemical sensors. Often used as the sensor output signal, the gate threshold voltage (V(th)) is subject to concentration-dependent shifts upon exposure to target analytes. However, an unambiguous determina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2010-05, Vol.21 (18), p.185501-185501
Hauptverfasser: Mattmann, M, Roman, C, Helbling, T, Bechstein, D, Durrer, L, Pohle, R, Fleischer, M, Hierold, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbon-nanotube-based field effect transistors (CNFETs) have been employed as highly sensitive chemical sensors. Often used as the sensor output signal, the gate threshold voltage (V(th)) is subject to concentration-dependent shifts upon exposure to target analytes. However, an unambiguous determination of the intrinsic V(th) is usually hampered by substantial hysteresis in CNFET gate characteristics. In this study we show that short gate voltage (V(gd)) pulses can be used for hysteresis reduction in CNFETs as chemical sensors, in particular for NO(2) detection. In the pulsed operation regime, even small shifts of V(th) upon sub-ppm NO(2) exposure remain resolvable. Furthermore, the hysteretic behaviour is systematically investigated by varying the pulse waveforms and timing parameters. Finally, we use an adapted hysteresis model for pulsed V(gd) and employ it to discuss the measurement data.
ISSN:1361-6528
DOI:10.1088/0957-4484/21/18/185501