Cloning and functional characterization of a new antimicrobial peptide gene StCT1 from the venom of the scorpion Scorpiops tibetanus

Scorpion has an innovative venom gland, which is an important determinant in contributing to its successful survival for more than 400 million years. Scorpion venom contains a diversity of bioactive peptides, which represent a tremendous hitherto unexplored resource for use in drug design and develo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Peptides (New York, N.Y. : 1980) N.Y. : 1980), 2010-01, Vol.31 (1), p.22-26
Hauptverfasser: Yuan, Wenying, Cao, Luyang, Ma, Yibao, Mao, Panyong, Wang, Weipeng, Zhao, Ruiming, Wu, Yingliang, Cao, Zhijian, Li, Wenxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Scorpion has an innovative venom gland, which is an important determinant in contributing to its successful survival for more than 400 million years. Scorpion venom contains a diversity of bioactive peptides, which represent a tremendous hitherto unexplored resource for use in drug design and development. Here, StCT1, a new antimicrobial peptide gene, was screened and isolated from the venomous gland cDNA library of the scorpion Scorpiops tibetanus. The full-length cDNA of StCT1 is 369 nucleotides encoding the precursor that contains a putative 24-residue signal peptide, a presumed 14-residue mature peptide, and an uncommon 37-residue acidic propeptide at the C-terminus. The minimal inhibitory concentrations (MICs) of the synthetic StCT1 peptide against Staphylococcus aureus and Micrococcus luteus were 12.5μg/ml and 100μg/ml, respectively. The MICs of StCT1 against clinical antibiotics-resistant bacterial strains, were 50–250μg/ml, 2–40 folds lower than those of penicillin. These results show that the antimicrobial peptide encoded by StCT1 gene from the venom of the scorpion S. tibetanus is a potential anti-infective polypeptide or lead compound, especially for treating antibiotics-resistant pathogens.
ISSN:0196-9781
1873-5169
DOI:10.1016/j.peptides.2009.10.008