High-frequency phage-mediated gene transfer in freshwater environments determined at single-cell level

Lateral gene transfer by phages has contributed significantly to the genetic diversity of bacteria. To accurately determine the frequency and range of phage-mediated gene transfer, it is important to understand the movement of DNA among microbes. Using an in situ DNA amplification technique (cycling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ISME Journal 2010-05, Vol.4 (5), p.648-659
Hauptverfasser: Kenzaka, Takehiko, Tani, Katsuji, Nasu, Masao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lateral gene transfer by phages has contributed significantly to the genetic diversity of bacteria. To accurately determine the frequency and range of phage-mediated gene transfer, it is important to understand the movement of DNA among microbes. Using an in situ DNA amplification technique (cycling primed in situ amplification-fluorescent in situ hybridization; CPRINS-FISH), we examined the propensity for phage-mediated gene transfer in freshwater environments at the single-cell level. Phage P1, T4 and isolated Escherichia coli phage EC10 were used as vectors. All E. coli phages mediated gene transfer from E. coli to both plaque-forming and non-plaque-forming Enterobacteriaceae strains at frequencies of 0.3–8 × 10 −3 per plaque-forming unit (PFU), whereas culture methods using selective agar media could not detect transductants in non-plaque-forming strains. The DNA transfer frequencies through phage EC10 ranged from undetectable to 9 × 10 −2 per PFU (undetectable to 2 × 10 −3 per total direct count) when natural bacterial communities were recipients. Direct viable counting combined with CPRINS-FISH revealed that more than 20% of the cells carrying the transferred gene retained their viability in most cases. These results indicate that the exchange of DNA sequences among bacteria occurs frequently and in a wide range of bacteria, and may promote rapid evolution of the prokaryotic genome in freshwater environments.
ISSN:1751-7362
1751-7370
DOI:10.1038/ismej.2009.145