Phytate and phytase: consequences for protein utilisation
The excretion of large amounts of P in effluent from intensive pig and poultry units is indicative of the poor availability of phytate-bound P in plant-derived feed ingredients. This environmental problem prompted the development and acceptance of microbial phytase feed enzymes for single-stomached...
Gespeichert in:
Veröffentlicht in: | Nutrition research reviews 2000-12, Vol.13 (2), p.255-278 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The excretion of large amounts of P in effluent from intensive pig and poultry units is indicative of the poor availability of phytate-bound P in plant-derived feed ingredients. This environmental problem prompted the development and acceptance of microbial phytase feed enzymes for single-stomached animals. Their introduction led to an increasing recognition that phytate may have adverse effects on protein utilisation in addition to P. Consequently, the nutritional relevance of protein–phytate interactions for pigs and poultry is considered in the present review. Since the current understanding of the effects of protein–phytate interactions comes mainly from responses obtained to added phytase, literature on the influence of microbial phytases on amino acid digestibility and utilisation is summarised, followed by a discussion of possible mechanisms contributing to the negative effects of phytate. However, the rationale for the protein responses to added phytase remains largely speculative, and several modes of action are probably involved. It may be that the release of protein from protein–phytate complexes occurring naturally in feed ingredients, the prevention of formation of binary and ternary protein–phytate complexes within the gut, the alleviation of the negative impact of phytate on digestive enzymes and the reduction in endogenous amino acid losses are all contributing factors. A better understanding of the mechanisms of protein–phytate interactions and the modes of action of exogenous phytase enzymes is clearly desirable. Studies are also needed to identify and quantify the factors that contribute to the variable amino acid responses to added phytase. It appears that the relative solubilities of phytate salts and proteins from different feed ingredients and their effects on the extent of protein–phytate complex formation, coupled with variations in the effectiveness of phytase in different dietary contexts, may be the major factors responsible. |
---|---|
ISSN: | 0954-4224 1475-2700 |
DOI: | 10.1079/095442200108729098 |