Automated design of synthetic ribosome binding sites to control protein expression
Microbial engineering often requires fine control over protein expression-for example, to connect genetic circuits or control flux through a metabolic pathway. To circumvent the need for trial and error optimization, we developed a predictive method for designing synthetic ribosome binding sites, en...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2009-10, Vol.27 (10), p.946-950 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microbial engineering often requires fine control over protein expression-for example, to connect genetic circuits or control flux through a metabolic pathway. To circumvent the need for trial and error optimization, we developed a predictive method for designing synthetic ribosome binding sites, enabling a rational control over the protein expression level. Experimental validation of >100 predictions in Escherichia coli showed that the method is accurate to within a factor of 2.3 over a range of 100,000-fold. The design method also correctly predicted that reusing identical ribosome binding site sequences in different genetic contexts can result in different protein expression levels. We demonstrate the method's utility by rationally optimizing protein expression to connect a genetic sensor to a synthetic circuit. The proposed forward engineering approach should accelerate the construction and systematic optimization of large genetic systems. |
---|---|
ISSN: | 1087-0156 1546-1696 |
DOI: | 10.1038/nbt.1568 |