Design of Short Linear Peptides That Show Hydrogen Bonding Constraints in Water

Using a combination of an aromatic amino acid, a homoserine side chain, and a d-amino acid, a series of linear tetrapeptides were designed that adopt an “Hse turn” in water. The conformation was stabilized by intramolecular hydrogen bonds even in the presence of surrounding water molecules. In parti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2010-04, Vol.132 (13), p.4508-4509
Hauptverfasser: Song, Benben, Kibler, Patrick, Malde, Alpeshkumar, Kodukula, Krishna, Galande, Amit K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using a combination of an aromatic amino acid, a homoserine side chain, and a d-amino acid, a series of linear tetrapeptides were designed that adopt an “Hse turn” in water. The conformation was stabilized by intramolecular hydrogen bonds even in the presence of surrounding water molecules. In particular, the peptide with sequence H-Abz-Homoser-Ser-d-Gln-NH2 showed significant through-space interactions and its free energy of folding is estimated to be on the order of −4 kcal/mol. We report the design of the tetrapeptides using a novel mimicry approach and their characterization based on NMR spectroscopy and MD simulations.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja905341p