Micellar colorimetric determination of iron, cobalt, nickel and copper using 1-nitroso-2-naphthol
1-Nitroso-2-naphthol, an excellent color-forming chelating agent, combines to Fe(III), Co(II), Ni(II), Cu(II) and so on to form slightly soluble complexes in aqueous solution. To determine these metal ions, a tedious and time consuming separation technique, such as liquid–liquid extraction, has ofte...
Gespeichert in:
Veröffentlicht in: | Talanta (Oxford) 2000-08, Vol.52 (5), p.893-902 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 1-Nitroso-2-naphthol, an excellent color-forming chelating agent, combines to Fe(III), Co(II), Ni(II), Cu(II) and so on to form slightly soluble complexes in aqueous solution. To determine these metal ions, a tedious and time consuming separation technique, such as liquid–liquid extraction, has often been performed. However, these metal-1-nitroso-2-naphthol complexes could be determined conveniently by ultraviolet-visible (UV-Vis) spectrophotometry in Tween 80 micellar medium that has polyoxyethylene groups. After conditions such as pH, the amount of 1-nitroso-2-naphthol and the stability were adjusted to their optimum values, the sensitivities of the metal ions in Tween 80 medium and in chloroform were compared. It was shown that the sensitivities of Fe(III) and Co(II) in Tween 80 medium were higher than in chloroform, but that of Cu(II) was lower. The interfering effects among analytes ions, Fe(III), Co(II), Ni(II) and Cu(II) were more serious than by other ions, but the interfering effects could be removed by adjusting pH or adding the masking agents such as NH
3 or oxalate. Detection limits of Fe(III), Co(II), Ni(II), and Cu(II) were 0.024, 0.016, 0.039 and 0.023 μg ml
−1, respectively, and the correlation coefficients of these calibration curves were above 0.996. Recovery yields of the metal ions in the mixed standard solution ranged from 96 to 103%, and their coefficients of variation were low ranging between 0.94 and 1.75%. Cu(II) in brass sample and the amount of Fe(III) in steel sample were also determined. This proposed technique is simple, convenient and speedy. |
---|---|
ISSN: | 0039-9140 1873-3573 |
DOI: | 10.1016/S0039-9140(00)00441-0 |