Versatile Solution Phase Triangular Silver Nanoplates for Highly Sensitive Plasmon Resonance Sensing

Solution phase triangular silver nanoplates (TSNP) with versatile tunability throughout the visible−NIR wavelengths are presented as highly sensitive localized surface plasmon refractive index sensors. A range of 20 TSNP solutions with edge lengths ranging from 11 to 200 nm and aspect ratios from 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2010-01, Vol.4 (1), p.55-64
Hauptverfasser: Charles, Denise E, Aherne, Damian, Gara, Matthew, Ledwith, Deirdre M, Gun’ko, Yurii K, Kelly, John M, Blau, Werner J, Brennan-Fournet, Margaret E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solution phase triangular silver nanoplates (TSNP) with versatile tunability throughout the visible−NIR wavelengths are presented as highly sensitive localized surface plasmon refractive index sensors. A range of 20 TSNP solutions with edge lengths ranging from 11 to 200 nm and aspect ratios from 2 to 13 have been studied comprehensively using AFM, TEM, and UV−vis−NIR spectroscopy. Studies of the localized surface plasmon resonance (LSPR) peak’s sensitivity to refractive index changes are performed using a simple sucrose concentration method whereby the surrounding refractive index can solely be changed without variation in any other parameter. The dependence of the TSNP localized surface plasmon resonance (LSPR) peak wavelength λmax and its bulk refractive index sensitivity on the nanoplate’s structure is determined. LSPR sensitivities are observed to increase linearly with λmax up to 800 nm, with the values lying within the upper limit theoretically predicted for optimal sensitivity, notwithstanding any diminution due to ensemble averaging. A nonlinear increase in sensitivity is apparent at wavelengths within the NIR region with values reaching 1096 nm·RIU−1 at λmax 1093 nm. Theoretical studies performed using a simple aspect ratio dependent approximation method and discrete dipole approximation methods confirm the dependence of the LSPR bulk refractive index sensitivity upon the TSNP aspect ratio measured experimentally. These studies highlight the importance of this key parameter in acquiring such high sensitivities and promote these TSNP sols for sensing applications at appropriate wavelengths for biological samples.
ISSN:1936-0851
1936-086X
DOI:10.1021/nn9016235