Square-Wave Adsorptive Stripping Voltammetric Method for Determination of Fast Green Dye
Square-wave adsorptive stripping voltammetric (SW-AdSV) determinations of trace concentrations of the coloring agent fast green were described. The analytical methodology used was based on the adsorptive preconcentration of the dye on the hanging mercury drop electrode, and then a negative sweep was...
Gespeichert in:
Veröffentlicht in: | Journal of AOAC International 2009-11, Vol.92 (6), p.1714-1719 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Square-wave adsorptive stripping voltammetric (SW-AdSV) determinations of trace concentrations of the coloring agent fast green were described. The analytical methodology used was based on the adsorptive preconcentration of the dye on the hanging mercury drop electrode, and then a negative sweep was initiated. In pH 10 carbonate supporting electrolyte, fast green gave a well-defined and sensitive SW-AdSV peak at -1220 mV. The electroanalytical determination of this dye was found to be optimized in carbonate buffer (pH 10) with the following experimental conditions: accumulation time (120 s); accumulation potential (-0.8 V); scan rate (800 mV/s); pulse amplitude (90 mV); frequency (90 Hz); surface area of the working electrode (0.6 mm2); and the convection rate (2000 rpm). Under these optimized conditions, the AdSV peak current was proportional over the concentration range 2 x 10-8-6 x 10-7 M (r = 0.999), with an LOD of 1.63 x 10-10 M (0.132 ppb). This analytical approach possessed more enhanced sensitivity than conventional chromatography or spectrophotometry, and was simple and quick. The precision of the method in terms of RSD was 0.17%, whereas the accuracy was evaluated via the mean recovery of 99.6%. Possible interferences by several substances usually present as food additive azo dyes (E110, E102, E123, and E129), natural and artificial sweeteners, and antioxidants were also investigated. Applicability of the developed electroanalysis method was illustrated via the determination of fast green in ice cream and soft drink samples. |
---|---|
ISSN: | 1060-3271 1944-7922 |
DOI: | 10.1093/jaoac/92.6.1714 |