Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments

Cytokines are pleiotropic and readily diffusible messenger molecules, raising the question of how their action can be confined to specific target cells. The T cell cytokine interleukin-2 (IL-2) is essential for the homeostasis of regulatory T (Treg) cells that suppress (auto)immunity and stimulates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-02, Vol.107 (7), p.3058-3063
Hauptverfasser: Busse, Dorothea, de la Rosa, Maurus, Hobiger, Kirstin, Thurley, Kevin, Flossdorf, Michael, Scheffold, Alexander, Höfer, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cytokines are pleiotropic and readily diffusible messenger molecules, raising the question of how their action can be confined to specific target cells. The T cell cytokine interleukin-2 (IL-2) is essential for the homeostasis of regulatory T (Treg) cells that suppress (auto)immunity and stimulates immune responses mediated by conventional T cells. We combined mathematical modeling and experiments to dissect the dynamics of the IL-2 signaling network that links the prototypical IL-2 producers, conventional T helper (Th) cells, and Treg cells. We show how the IL-2-induced upregulation of high-affinity IL-2 receptors (IL-2R) establishes a positive feedback loop of IL-2 signaling. This feedback mediates a digital switch for the proliferation of Th cells and functions as an analog amplifier for the IL-2 uptake capacity of Treg cells. Unlike other positive feedbacks in cell signaling that augment signal propagation, the IL-2/IL-2R loop enhances the capture of the signal molecule and its degradation. Thus Treg and Th cells can compete for IL-2 and restrict its range of action through efficient cellular uptake. Depending on activation status and spatial localization of the cells, IL-2 may be consumed exclusively by Treg or Th cells, or be shared between them. In particular, a Treg cell can deprive a stimulated Th cell of its IL-2, but only when the cells are located in close proximity, within a few tens of micrometers. The present findings explain how IL-2 can play two disctinct roles in immune regulation and point to a hitherto largely unexplored spatiotemporal complexity of cytokine signaling.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0812851107