Citral Stability in Oil-in-Water Emulsions with Solid or Liquid Octadecane

Citral stability in oil-in-water emulsions at pH 3.0 with solid or liquid octadecane was determined. Citral degradation was faster in anionic sodium dodecyl sulfate (SDS)-stabilized emulsions than non-ionic polyoxyethylene (23) lauryl ether (Brij)-stabilized emulsions. Crystallization of octadecane...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2010-01, Vol.58 (1), p.533-536
Hauptverfasser: Mei, Longyuan, Choi, Seung Jun, Alamed, Jean, Henson, Lulu, Popplewell, Michael, McClements, D. Julian, Decker, Eric A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Citral stability in oil-in-water emulsions at pH 3.0 with solid or liquid octadecane was determined. Citral degradation was faster in anionic sodium dodecyl sulfate (SDS)-stabilized emulsions than non-ionic polyoxyethylene (23) lauryl ether (Brij)-stabilized emulsions. Crystallization of octadecane in both Brij- and SDS-stabilized emulsion droplets resulted in faster degradation of citral. Crystallization of octadecane in emulsion droplets increased citral partitioning into the aqueous phase, with 41−53% of the total citral in the aqueous phase when octadecane was solid compared to 18−25% when octadecane was liquid. This research suggests that factors that increase partitioning of citral out of the droplets of oil-in-water emulsions increase citral degradation rates. These results suggest that the stability of citral could be increased in oil-in-water emulsions by technologies that decrease its partitioning and exposure to acidic aqueous phases.
ISSN:0021-8561
1520-5118
DOI:10.1021/jf902665b