Citral Stability in Oil-in-Water Emulsions with Solid or Liquid Octadecane
Citral stability in oil-in-water emulsions at pH 3.0 with solid or liquid octadecane was determined. Citral degradation was faster in anionic sodium dodecyl sulfate (SDS)-stabilized emulsions than non-ionic polyoxyethylene (23) lauryl ether (Brij)-stabilized emulsions. Crystallization of octadecane...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2010-01, Vol.58 (1), p.533-536 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Citral stability in oil-in-water emulsions at pH 3.0 with solid or liquid octadecane was determined. Citral degradation was faster in anionic sodium dodecyl sulfate (SDS)-stabilized emulsions than non-ionic polyoxyethylene (23) lauryl ether (Brij)-stabilized emulsions. Crystallization of octadecane in both Brij- and SDS-stabilized emulsion droplets resulted in faster degradation of citral. Crystallization of octadecane in emulsion droplets increased citral partitioning into the aqueous phase, with 41−53% of the total citral in the aqueous phase when octadecane was solid compared to 18−25% when octadecane was liquid. This research suggests that factors that increase partitioning of citral out of the droplets of oil-in-water emulsions increase citral degradation rates. These results suggest that the stability of citral could be increased in oil-in-water emulsions by technologies that decrease its partitioning and exposure to acidic aqueous phases. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/jf902665b |