In vivo bone formation in fracture repair induced by direct retroviral-based gene therapy with bone morphogenetic protein-4

This study sought to develop an in vivo gene therapy to accelerate the repair of bone fractures. In vivo administration of an engineered viral vector to promote fracture healing represents a potential high-efficacy, low-risk procedure. We selected a murine leukemia virus (MLV)-based retroviral vecto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bone (New York, N.Y.) N.Y.), 2003-06, Vol.32 (6), p.591-601
Hauptverfasser: Rundle, Charles H, Miyakoshi, Naohisa, Kasukawa, Yuji, Chen, Shin-Tai, Sheng, Matilda H.-C, Wergedal, Jon E, Lau, K.-H.William, Baylink, David J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study sought to develop an in vivo gene therapy to accelerate the repair of bone fractures. In vivo administration of an engineered viral vector to promote fracture healing represents a potential high-efficacy, low-risk procedure. We selected a murine leukemia virus (MLV)-based retroviral vector, because this vector would be expected to target transgene expression to the proliferating periosteal cells arising shortly after bone fracture. This vector transduced a hybrid gene that consisted of a bone morphogenetic protein (BMP)-4 transgene with the BMP-2 secretory signal to enhance the secretion of mature BMP-4. The MLV vector expressing this BMP-2/4 hybrid gene or β-galactosidase control gene was administered at the lateral side of the fracture periosteum at 1 day after fracture in the rat femoral fracture model. X-ray examination by radiograph and peripheral quantitative computed tomography at 7, 14, and 28 days after fracture revealed a highly significant enhancement of fracture tissue size in the MLV-BMP-2/4-treated fractures compared to the control fractures. The tissue was extensively ossified at 14 and 28 days, and the newly formed bone exhibited normal bone histology. This tissue also exhibited strong immunohistochemical staining of BMP-4. Additional control and MLV-BMP-2/4-treated animals each were monitored for 70 days to determine the fate of the markedly enhanced fracture callus. Radiographs showed that the hard callus had been remodeled and substantial healing at the fracture site had occurred, suggesting that the union of the bone at the fracture site was at least as high in the BMP-4-treated bone as in the control bone. There was no evidence of viral vector infection of extraskeletal tissues, suggesting that this in vivo gene therapy for fracture repair is safe. In summary, we have demonstrated for the first time that a MLV-based retroviral vector is a safe and effective means of introducing a transgene to a fracture site and that this procedure caused an enormous augmentation of fracture bone formation.
ISSN:8756-3282
1873-2763
DOI:10.1016/S8756-3282(03)00096-6