Environmental factors affecting production, release, and field populations of conidia of Alternaria alternata, the cause of brown spot of citrus
Alternaria brown spot, caused by Alternaria alternata pv. citri, affects many tangerines and their hybrids, causing loss of immature leaves and fruit and reducing the marketability of the remaining fruit. Conidial production of A. alternata was greatest on mature leaves moistened and maintained at n...
Gespeichert in:
Veröffentlicht in: | Phytopathology 1998-11, Vol.88 (11), p.1218-1223 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Alternaria brown spot, caused by Alternaria alternata pv. citri, affects many tangerines and their hybrids, causing loss of immature leaves and fruit and reducing the marketability of the remaining fruit. Conidial production of A. alternata was greatest on mature leaves moistened and maintained at near 100% relative humidity (RH) for 24 h, whereas leaves that had been soaked or maintained at moderate RH produced few conidia. Conidial release from filter paper cultures and infected leaves was studied in a computer-controlled environmental chamber. Release of large numbers of conidia was triggered from both substrates by sudden drops in RH or by simulated rainfall events. Vibration induced release of low numbers of conidia, but red/infrared irradiation had no effect. In field studies from 1994 to 1996, air sampling with a 7-day recording volumetric spore trap indicated that conidia were present throughout the year with periodic large peaks. The number of conidia captured was not closely related to rainfall amounts or average wind speed, but was weakly related to the duration of leaf wetness. Likewise, disease severity on trap plants placed in the field weekly during 1995 to 1996 was not closely related to conidial numbers or rainfall amounts, but was weakly related to leaf wetness duration. Sufficient inoculum appears to be available to allow infection to occur throughout the year whenever susceptible host tissue and moisture are available. |
---|---|
ISSN: | 0031-949X 1943-7684 |
DOI: | 10.1094/PHYTO.1998.88.11.1218 |