The effect of immobilized platelet derived growth factor AA on neural stem/progenitor cell differentiation on cell-adhesive hydrogels
Abstract Neural stem/progenitor cells (NSPCs) hold great promise in regenerative medicine; however, controlling their differentiation to a desired phenotype within a defined matrix is challenging. To guide the differentiation of NSPCs, we first created a cell-adhesive matrix of agarose modified with...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2008-12, Vol.29 (35), p.4676-4683 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Neural stem/progenitor cells (NSPCs) hold great promise in regenerative medicine; however, controlling their differentiation to a desired phenotype within a defined matrix is challenging. To guide the differentiation of NSPCs, we first created a cell-adhesive matrix of agarose modified with glycine–arginine–glycine–aspartic acid–serine (GRGDS) and then demonstrated the multipotentiality of NSPCs to differentiate to the three primary cell types of the central nervous system on this matrix: neurons, oligodendrocytes and astrocytes. We then examined whether immobilized platelet derived growth factor AA (PDGF-AA) would promote differentiation similarly to the same soluble factor and found similar percentages of NSPCs differentiated to oligodendrocytes as determined by immunohistochemistry (IHC) and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Interestingly, the gene expression of the differentiated oligodendrocytes was similar for 2′, 3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) but different for myelin oligodendrocyte glycoprotein (MOG) in the presence of soluble PDGF-AA vs. immobilized PDGF-AA. These results demonstrate for the first time, that it is possible to control the differentiation of NSPCs, and specifically to oligodendrocytes, in cell-adhesive matrices with immobilized PDGF-AA. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2008.08.018 |