Oospore production of Phytophthora infestans in potato and tomato leaves

Fungal, host, and environmental factors affecting sexual reproduction of Phytophthora infestans in planta were studied. Intact and detached leaves were coinoculated with sporangia of various combinations of A1 and A2 mating-type isolates; leaves were incubated under various conditions, and oospore p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phytopathology 1997-02, Vol.87 (2), p.191-196
Hauptverfasser: Cohen, Y. (Bar-Ilan University, Ramat Gan, Israel.), Farkash, S, Reshit, Z, Baider, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fungal, host, and environmental factors affecting sexual reproduction of Phytophthora infestans in planta were studied. Intact and detached leaves were coinoculated with sporangia of various combinations of A1 and A2 mating-type isolates; leaves were incubated under various conditions, and oospore production was estimated microscopically within whole, clarified leaflets. Some A1 + A2 isolate combinations were more reproductive than others, whereas some potato genotypes better supported oospore formation than others. Tomato usually supported more oospore formation than potato. To induce oospore formation, A1 and A2 sporangia were usually mixed at a 1:1 ratio. Ratios of 1:19 to 19:1, however, also allowed abundant production of oospores. Optimal temperatures for sexual sporulation ranged from 8 to 15 degrees C, but oospores also were produced at 23 degrees C. Oogonia developed 5 to 6 days after sporangial coinoculation, and oospores developed after 8 to 10 days. Light had little effect on oospore formation in both tomato and potato leaves provided that initial lesions were established under photoperiodic conditions. Although A1 and A2 sporangia usually were mixed before inoculation on leaves to obtain oospores, we found that discrete A1 and A2 lesions produced on opposite sides of the midvein of tomato leaves also induced oospore formation in the midvein and adjacent tissues. Oospores also formed when the two halves of the leaves were cut and separated at 3 days after sporangial coinoculation, which corresponded with the appearance of late blight lesions. The continuous supply of moisture to infected leaves was essential to oospore production. No oospores or oogonia formed in severely diseased plants kept at 50 to 80% relative humidity. Such plants did allow some oospore formation when kept continuously wet for 2 weeks in plastic boxes or tents. Detached leaves floated on water supported the highest sexual sporulation
ISSN:0031-949X
1943-7684
DOI:10.1094/PHYTO.1997.87.2.191