A Bifunctional Molecule That Displays Context-Dependent Cellular Activity

The cell-permeable dihydrofolate reductase inhibitor methotrexate was covalently linked to a ligand for the protein FKBP to create a bifunctional molecule called MTXSLF. The covalent tether between the two ligands was designed to be prohibitively short, so that unfavorable protein−protein interactio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2003-06, Vol.125 (25), p.7575-7580
Hauptverfasser: Braun, Patrick D, Barglow, Katherine T, Lin, Yun-Ming, Akompong, Thomas, Briesewitz, Roger, Ray, Gregory T, Haldar, Kasturi, Wandless, Thomas J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cell-permeable dihydrofolate reductase inhibitor methotrexate was covalently linked to a ligand for the protein FKBP to create a bifunctional molecule called MTXSLF. The covalent tether between the two ligands was designed to be prohibitively short, so that unfavorable protein−protein interactions between DHFR and FKBP preclude formation of a trimeric complex. In vitro and in vivo experiments demonstrate that MTXSLF is an effective inhibitor of human DHFR, but that efficacy is decreased in the presence of human FKBP due to the high concentration of FKBP and its tight affinity for MTXSLF. MTXSLF also inhibits Plasmodium falciparum DHFR in vitro, but a low concentration of the weaker binding Plasmodium FKBP has no effect on the inhibitory potency of MTXSLF in vivo. These studies illustrate a potentially general strategy for modulating the biological activity of synthetic molecules that depends on the ligand-binding properties of a nontarget protein.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja035176q