X-Ray reflectometry studies on the effect of water on the surface structure of [C4mpyr][NTf2] ionic liquid

The effect of water on the surface structure of 1-butyl-1-methylpyrrolidinium trifluoromethylsulfonylimide [C(4)mpyr][NTf(2)] ionic liquid was investigated using X-ray reflectometry. The measured reflectivity data suggests a significant amount of water is adsorbed at the surface, with the first laye...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2009-01, Vol.11 (48), p.11507-11514
Hauptverfasser: LAUW, Y, HORNE, M. D, RODOPOULOS, T, WEBSTER, N. A. S, MINOFAR, B, NELSON, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of water on the surface structure of 1-butyl-1-methylpyrrolidinium trifluoromethylsulfonylimide [C(4)mpyr][NTf(2)] ionic liquid was investigated using X-ray reflectometry. The measured reflectivity data suggests a significant amount of water is adsorbed at the surface, with the first layer from the gas (nitrogen)-liquid phase boundary mainly occupied by a mixture of cations and water. Beyond the cation + water layer, the scattering length density increases towards the bulk value, indicating a decreasing amount of water and cations, and/or an increasing amount of anions. The orientation of the butyl chain of cation at the phase boundary and the population of water at the surface were described based on results from an independent molecular dynamics (MD) simulation. We show that the presence of water in the ionic liquid has a non-monotonic effect on the overall thickness of the surface. At low water content, the addition of water does not change the surface thickness since water is mainly present in the bulk. As the water content increases, the surface swells before eventually shrinking down close to the solubility limit of water. The non-monotonic surface thickness is used to explain the anomalous trend of surface tension in ionic liquid-water mixtures reported in the literature.
ISSN:1463-9076
1463-9084
DOI:10.1039/b916046a