The in vitro and in vivo antitumor activity of adenovirus-mediated interleukin-24 expression for laryngocarcinoma

Interleukin-24 (IL-24)/melanoma differentiation associated gene-7 (mda-7) as a novel tumor-suppressor gene has potent antitumor activities in a broad spectrum of human cancers through the activation of various signaling pathways. However, the suppressive effect of adenovirus-mediated IL-24 (Ad-IL-24...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer biotherapy & radiopharmaceuticals 2010-02, Vol.25 (1), p.29-38
Hauptverfasser: Liu, Jisheng, Sheng, Weihua, Xie, Yufeng, Shan, Yunbo, Miao, Jingcheng, Xiang, Jim, Yang, Jicheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interleukin-24 (IL-24)/melanoma differentiation associated gene-7 (mda-7) as a novel tumor-suppressor gene has potent antitumor activities in a broad spectrum of human cancers through the activation of various signaling pathways. However, the suppressive effect of adenovirus-mediated IL-24 (Ad-IL-24) expression on human laryngeal cancers is still elusive. In this study, we explored the therapeutic effect of Ad-IL-24 on human laryngeal cancers in vitro and in vivo in an athymic nude mouse model, using a Hep-2 human laryngocarcinoma cell line, and a WI-38 human diploid cell line served as a normal cell control. We demonstrated that Ad-IL-24 induced significant growth inhibition and apoptosis, upregulated the expression of P21, P27, and Bax, downregulated Bcl-2 expression, and activated caspase-3 in Hep-2 laryngeal tumor cells, while it exerted no direct effect on the in vitro proliferation of WI-38 normal diploid cells. Moreover, intratumoral injections of Ad-IL-24 in nude mice bearing Hep-2 tumors significantly suppressed the laryngeal xengrafted tumor growth and reduced microvessel density (MVD) and VEGF expression in tumors. This retarded tumor growth in vitro and in vivo elicited by Ad-IL-24 was closely associated with the upregulation of proliferation-related molecules P21 and P27, decrease in the ratio of anti- to proapoptotic molecules Bcl-2/Bax, followed by the activation of caspase-3, leading to apoptosis via intrinsic apoptotic pathways, and the reduced expression of proangiogenic factor VEGF involved in the inhibition of tumor angiogenesis. Thus, our results indicate that the potent, selective killing activity of Ad-IL-24 in laryngeal cancer cells, but not in normal cells, makes this vector a potential candidate for laryngeal cancer gene therapy.
ISSN:1084-9785
1557-8852
DOI:10.1089/cbr.2009.0706