The osmoregulatory tissue around the afferent blood vessels of the coxal gills in the estuarine amphipods, Grandidierella japonica and Melita setiflagella

By electron microscopy of the coxal gills in two species of estuarine amphipod crustaceans, Grandidierella japonica and Melita satifragella, we found a patch-like, specialized tissue area which consisted of unique cells closely resembling the salt-excreting cells in the gill of the brine shrimp and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tissue & cell 1993-08, Vol.25 (4), p.627-638
Hauptverfasser: Kikuchi, Susumu, Matsumasa, Masatoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By electron microscopy of the coxal gills in two species of estuarine amphipod crustaceans, Grandidierella japonica and Melita satifragella, we found a patch-like, specialized tissue area which consisted of unique cells closely resembling the salt-excreting cells in the gill of the brine shrimp and so-called chloride cells in teleost gills. These cells were characterized by an abundance of mitochondria, two kinds of extensive networks of cytoplasmic tubules, well-developed lamellar infoldings of the basal cell membrane, sparse microvillous projections of the apical border, and numerous large vacuoles with several incomplete partitions. The large (60 nm in diameter) and the small (30 nm) cytoplasmic tubular networks were found in the basal and the apical portions of the cell, respectively. The large networks, which were both directly and indirectly (through the lamellar system) continuous with the basal cell membrane, were regarded as extensions of the cell membrane. Both the outer walls and the partition walls of the vacuoles were reinforced with a parallel array of microtubules. The results suggest that this unique tissue plays an important role in the active transport of electrolytes to maintain a constant osmotic pressure of the hemolymph under widely fluctuating salinities of the estuarine environments.
ISSN:0040-8166
1532-3072
DOI:10.1016/0040-8166(93)90014-C