[FeFe]-Hydrogenase Maturation: HydG-Catalyzed Synthesis of Carbon Monoxide

Biosynthesis of the unusual organometallic H-cluster at the active site of the [FeFe]-hydrogenase requires three accessory proteins, two of which are radical AdoMet enzymes (HydE, HydG) and one of which is a GTPase (HydF). We demonstrate here that HydG catalyzes the synthesis of CO using tyrosine as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2010-07, Vol.132 (27), p.9247-9249
Hauptverfasser: Shepard, Eric M, Duffus, Benjamin R, George, Simon J, McGlynn, Shawn E, Challand, Martin R, Swanson, Kevin D, Roach, Peter L, Cramer, Stephen P, Peters, John W, Broderick, Joan B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biosynthesis of the unusual organometallic H-cluster at the active site of the [FeFe]-hydrogenase requires three accessory proteins, two of which are radical AdoMet enzymes (HydE, HydG) and one of which is a GTPase (HydF). We demonstrate here that HydG catalyzes the synthesis of CO using tyrosine as a substrate. CO production was detected by using deoxyhemoglobin as a reporter and monitoring the appearance of the characteristic visible spectroscopic features of carboxyhemoglobin. Assays utilizing 13C-tyrosine were analyzed by FTIR to confirm the production of HbCO and to demonstrate that the CO product was synthesized from tyrosine. CO ligation is a common feature at the active sites of the [FeFe], [NiFe], and [Fe]-only hydrogenases; however, this is the first report of the enzymatic synthesis of CO in hydrogenase maturation.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja1012273