GABA(A) receptor subunit alteration-dependent diazepam insensitivity in the cerebellum of phospholipase C-related inactive protein knockout mice
The GABA(A) receptor, a pentamer composed predominantly of alpha, beta, and gamma subunits, mediates fast inhibitory synaptic transmission. We have previously reported that phospholipase C-related inactive protein (PRIP) is a modulator of GABA(A) receptor trafficking and that knockout (KO) mice exhi...
Gespeichert in:
Veröffentlicht in: | Journal of neurochemistry 2010-07, Vol.114 (1), p.302-310 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The GABA(A) receptor, a pentamer composed predominantly of alpha, beta, and gamma subunits, mediates fast inhibitory synaptic transmission. We have previously reported that phospholipase C-related inactive protein (PRIP) is a modulator of GABA(A) receptor trafficking and that knockout (KO) mice exhibit a diazepam-insensitive phenotype in the hippocampus. The alpha subunit affects diazepam sensitivity; alpha1, 2, 3, and 5 subunits assemble with any form of beta and the gamma2 subunits to produce diazepam-sensitive receptors, whereas alpha4 or alpha6/beta/gamma2 receptors are diazepam-insensitive. Here, we investigated how PRIP is implicated in the diazepam-insensitive phenotype using cerebellar granule cells in animals expressing predominantly the alpha6 subunit. The expression of alpha1/beta/gamma2 diazepam-sensitive receptors was decreased in the PRIP-1 and 2 double KO cerebellum without any change in the total number of benzodiazepine-binding sites as assessed by radioligand-binding assay. Since levels of the alpha6 subunit were increased, the alpha1/beta/gamma2 receptors might be replaced with alpha6 subunit-containing receptors. Then, we further performed autoradiographic and electrophysiologic analyses. These results suggest that the expression of alpha6/delta receptors was decreased in cerebellar granule neurons, while that of alpha6/gamma2 receptors was increased. PRIP-1 and 2 double KO mice exhibit a diazepam-insensitive phenotype because of a decrease in diazepam-sensitive (alpha1/gamma2) and increase in diazepam-insensitive (alpha6/gamma2) GABA(A) receptors in the cerebellar granule cells. |
---|---|
ISSN: | 0022-3042 1471-4159 |
DOI: | 10.1111/j.1471-4159.2010.06754.x |