Dynamical transitions and sliding friction of the phase-field-crystal model with pinning
We study the nonlinear driven response and sliding friction behavior of the phase-field-crystal (PFC) model with pinning including both thermal fluctuations and inertial effects. The model provides a continuous description of adsorbed layers on a substrate under the action of an external driving for...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2010-01, Vol.81 (1 Pt 1), p.011121-011121, Article 011121 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the nonlinear driven response and sliding friction behavior of the phase-field-crystal (PFC) model with pinning including both thermal fluctuations and inertial effects. The model provides a continuous description of adsorbed layers on a substrate under the action of an external driving force at finite temperatures, allowing for both elastic and plastic deformations. We derive general stochastic dynamical equations for the particle and momentum densities including both thermal fluctuations and inertial effects. The resulting coupled equations for the PFC model are studied numerically. At sufficiently low temperatures, we find that the velocity response of an initially pinned commensurate layer shows hysteresis with dynamical melting and freezing transitions for increasing and decreasing applied forces at different critical values. The main features of the nonlinear response in the PFC model are similar to the results obtained previously with molecular dynamics simulations of particle models for adsorbed layers. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.81.011121 |