A Novel Potent Nicotinamide Phosphoribosyltransferase Inhibitor Synthesized via Click Chemistry
The inhibition of NAD synthesis or salvage pathways has been proposed as a novel target for antitumoral drugs. Two molecules with this mechanism of action are at present undergoing clinical trials. In searching for similar novel molecules, we exploited copper-catalyzed [3 + 2] cycloaddition between...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 2010-01, Vol.53 (2), p.616-623 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The inhibition of NAD synthesis or salvage pathways has been proposed as a novel target for antitumoral drugs. Two molecules with this mechanism of action are at present undergoing clinical trials. In searching for similar novel molecules, we exploited copper-catalyzed [3 + 2] cycloaddition between azides and alkynes (click chemistry) to synthesize 185 novel analogues. The most promising compound displays an IC50 for cytotoxicity in vitro of 3.8 ± 0.3 nM and an IC50 for NAD depletion of 3.0 ± 0.4 nM. Herein, we strengthen previous data suggesting that this class of compounds induces autophagic cell death. In addition to characterizing this compound and providing a rationale via molecular docking, we reinforce the excellent potential of click chemistry for rapidly generating structure−activity relationships and for drug screening. |
---|---|
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/jm9010669 |