Inorganic biomimetic nanostructures
Supramolecular structures modeled after biological systems (DNA and enzymes) are being developed to simultaneously mimic natural biological functions including catalysis, information storage, and self-assembly and to engineer novel electronic and magnetic properties. Structural mimics of nucleic aci...
Gespeichert in:
Veröffentlicht in: | Current opinion in chemical biology 2009-12, Vol.13 (5), p.669-677 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Supramolecular structures modeled after biological systems (DNA and enzymes) are being developed to simultaneously mimic natural biological functions including catalysis, information storage, and self-assembly and to engineer novel electronic and magnetic properties. Structural mimics of nucleic acids containing multiple metal-coordinating ligands, and comprising natural and artificial bases or completely synthetic systems, create stable double-stranded structures with new electronic, spectroscopic, and magnetic properties. Supramolecular inorganic mimics of enzymatic function, including metallonucleases and metalloproteases, have begun to be constructed. Alternatively, metal-organic-frameworks have potential as artificial catalysts with substrate-specificity and size-selectivity analogous to biological processes. This review describes some of the recent themes in inorganic supramolecular systems that aim to mimic and exploit nature's ability to self-assemble polyfunctional architectures for new materials and biological applications. |
---|---|
ISSN: | 1367-5931 1879-0402 |
DOI: | 10.1016/j.cbpa.2009.09.004 |