Activation of the transcription of Gal4-regulated genes by Physarum 14-3-3 in yeast is related to dimer-binding motif-2 and three phosphorylation sites
The roles of 14-3-3 proteins in the lower eukaryotes are still elusive. We isolated a cDNA encoding the 14-3-3 protein (P14-3-3) from the lower eukaryote Physarum polycephalum. This P14-3-3 gene was then inserted downstream of the Gal4 DNA-binding domain in the yeast expression vector pGBKT7. The re...
Gespeichert in:
Veröffentlicht in: | Archives of microbiology 2010, Vol.192 (1), p.33-40 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The roles of 14-3-3 proteins in the lower eukaryotes are still elusive. We isolated a cDNA encoding the 14-3-3 protein (P14-3-3) from the lower eukaryote Physarum polycephalum. This P14-3-3 gene was then inserted downstream of the Gal4 DNA-binding domain in the yeast expression vector pGBKT7. The recombinant vector was transformed into auxotrophic AH109 and Y187 yeast cells to detect the activation of Gal4-regulated gene expression mediated by P14-3-3. The results showed that three reporter genes (ADE2, HIS3, and lacZ) could be normally expressed, indicating that the transcriptional activation function of P14-3-3 was retained. We subsequently used a truncated P14-3-3 peptides and mutant peptides to study the activation of the Gal4-regulated genes ADE2, HIS3, and lacZ. We found that deletion of the N-terminal second dimer-binding motif (DBM2) sequence or the C-terminal coil sequence led to the loss of P14-3-3's transcriptional activation function. Specifically, any mutation at the potential phosphorylation sites (Ser62 and Ser67) on DBM2 or at the C-terminal potential phosphorylation site (235ThrSer236) led to the loss of the transcriptional activation function of P14-3-3. Taken together, these observations suggest that the transcriptional activation function of P14-3-3 in lower eukaryotes is related to DBM2 and the C-terminal coil structures. |
---|---|
ISSN: | 0302-8933 1432-072X |
DOI: | 10.1007/s00203-009-0526-3 |