3-D Retinal Curvature Estimation

We study 3-D retinal curvature estimation from multiple images that provides the fundamental geometry of the human retina and could be used for 3-D retina visualization and disease diagnosis purposes. An affine camera model is used for 3-D reconstruction due to its simplicity, linearity, and robustn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2009-11, Vol.13 (6), p.997-1005
Hauptverfasser: Chanwimaluang, T., Guoliang Fan, Yen, G.G., Fransen, S.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1005
container_issue 6
container_start_page 997
container_title IEEE journal of biomedical and health informatics
container_volume 13
creator Chanwimaluang, T.
Guoliang Fan
Yen, G.G.
Fransen, S.R.
description We study 3-D retinal curvature estimation from multiple images that provides the fundamental geometry of the human retina and could be used for 3-D retina visualization and disease diagnosis purposes. An affine camera model is used for 3-D reconstruction due to its simplicity, linearity, and robustness. A major challenge is that a series of optics is involved in the retinal imaging process, including an actual fundus camera, a digital camera, and the optics of the human eye, all of which cause significant nonlinear distortions in retinal images. In this paper, we develop a new constrained optimization method that considers both the geometric shape of the human retina and nonlinear lens distortions. Moreover, we examine a variety of lens distortion models to approximate the optics of the human eye in order to create a smooth spherical surface for curvature estimation. The experimental results on both synthetic data and real retinal images validate the proposed algorithm.
doi_str_mv 10.1109/TITB.2009.2027014
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_733612612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5175484</ieee_id><sourcerecordid>21338348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-fa80096ff64f6e98aa0f0830688aec4d944b6c7fd75b879432e8a911d7817a5f3</originalsourceid><addsrcrecordid>eNqFkU1LAzEQQIMotlZ_gAiyeNDT1ky-c9RatVAQpJ5DupvAlm23JruC_96ULgoeFIZMIG9mwjyEzgGPAbC-XcwW92OCsU4HkRjYARoC5yrHmJLDdMdK51JKGKCTGFc4ERzoMRqAFoxKYEOU0fwhe3VttbF1NunCh2274LJpbKu1batmc4qOvK2jO-vzCL09TheT53z-8jSb3M3zggFuc29V-ofwXjAvnFbWYo8VxUIp6wpWasaWopC-lHyppGaUOGU1QCkVSMs9HaGbfd9taN47F1uzrmLh6tpuXNNFo4SUlBMp_iUlpQJIikRe_0kSoFRRphJ49QtcNV1IK0lzuWREKQwJgj1UhCbG4LzZhrSk8GkAm50Ps_Nhdj5M7yPVXPaNu-XalT8VvYAEXOyByjn3_cxBcqYY_QJ4YYqm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857428801</pqid></control><display><type>article</type><title>3-D Retinal Curvature Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Chanwimaluang, T. ; Guoliang Fan ; Yen, G.G. ; Fransen, S.R.</creator><creatorcontrib>Chanwimaluang, T. ; Guoliang Fan ; Yen, G.G. ; Fransen, S.R.</creatorcontrib><description>We study 3-D retinal curvature estimation from multiple images that provides the fundamental geometry of the human retina and could be used for 3-D retina visualization and disease diagnosis purposes. An affine camera model is used for 3-D reconstruction due to its simplicity, linearity, and robustness. A major challenge is that a series of optics is involved in the retinal imaging process, including an actual fundus camera, a digital camera, and the optics of the human eye, all of which cause significant nonlinear distortions in retinal images. In this paper, we develop a new constrained optimization method that considers both the geometric shape of the human retina and nonlinear lens distortions. Moreover, we examine a variety of lens distortion models to approximate the optics of the human eye in order to create a smooth spherical surface for curvature estimation. The experimental results on both synthetic data and real retinal images validate the proposed algorithm.</description><identifier>ISSN: 1089-7771</identifier><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 1558-0032</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/TITB.2009.2027014</identifier><identifier>PMID: 19643714</identifier><identifier>CODEN: ITIBFX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Affine camera ; Algorithms ; bundle adjustment (BA) ; Digital cameras ; Diseases ; Eyes &amp; eyesight ; Geometrical optics ; Humans ; Imaging, Three-Dimensional - methods ; lens distortion ; Lens, Crystalline - anatomy &amp; histology ; Lenses ; Models, Biological ; Nonlinear distortion ; Nonlinear optics ; Optical distortion ; Photography - methods ; Reproducibility of Results ; Retina ; Retina - anatomy &amp; histology ; retinal curvature estimation ; structure from motion (SfM) ; Visualization</subject><ispartof>IEEE journal of biomedical and health informatics, 2009-11, Vol.13 (6), p.997-1005</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-fa80096ff64f6e98aa0f0830688aec4d944b6c7fd75b879432e8a911d7817a5f3</citedby><cites>FETCH-LOGICAL-c410t-fa80096ff64f6e98aa0f0830688aec4d944b6c7fd75b879432e8a911d7817a5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5175484$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5175484$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19643714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chanwimaluang, T.</creatorcontrib><creatorcontrib>Guoliang Fan</creatorcontrib><creatorcontrib>Yen, G.G.</creatorcontrib><creatorcontrib>Fransen, S.R.</creatorcontrib><title>3-D Retinal Curvature Estimation</title><title>IEEE journal of biomedical and health informatics</title><addtitle>TITB</addtitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><description>We study 3-D retinal curvature estimation from multiple images that provides the fundamental geometry of the human retina and could be used for 3-D retina visualization and disease diagnosis purposes. An affine camera model is used for 3-D reconstruction due to its simplicity, linearity, and robustness. A major challenge is that a series of optics is involved in the retinal imaging process, including an actual fundus camera, a digital camera, and the optics of the human eye, all of which cause significant nonlinear distortions in retinal images. In this paper, we develop a new constrained optimization method that considers both the geometric shape of the human retina and nonlinear lens distortions. Moreover, we examine a variety of lens distortion models to approximate the optics of the human eye in order to create a smooth spherical surface for curvature estimation. The experimental results on both synthetic data and real retinal images validate the proposed algorithm.</description><subject>Affine camera</subject><subject>Algorithms</subject><subject>bundle adjustment (BA)</subject><subject>Digital cameras</subject><subject>Diseases</subject><subject>Eyes &amp; eyesight</subject><subject>Geometrical optics</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>lens distortion</subject><subject>Lens, Crystalline - anatomy &amp; histology</subject><subject>Lenses</subject><subject>Models, Biological</subject><subject>Nonlinear distortion</subject><subject>Nonlinear optics</subject><subject>Optical distortion</subject><subject>Photography - methods</subject><subject>Reproducibility of Results</subject><subject>Retina</subject><subject>Retina - anatomy &amp; histology</subject><subject>retinal curvature estimation</subject><subject>structure from motion (SfM)</subject><subject>Visualization</subject><issn>1089-7771</issn><issn>2168-2194</issn><issn>1558-0032</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU1LAzEQQIMotlZ_gAiyeNDT1ky-c9RatVAQpJ5DupvAlm23JruC_96ULgoeFIZMIG9mwjyEzgGPAbC-XcwW92OCsU4HkRjYARoC5yrHmJLDdMdK51JKGKCTGFc4ERzoMRqAFoxKYEOU0fwhe3VttbF1NunCh2274LJpbKu1batmc4qOvK2jO-vzCL09TheT53z-8jSb3M3zggFuc29V-ofwXjAvnFbWYo8VxUIp6wpWasaWopC-lHyppGaUOGU1QCkVSMs9HaGbfd9taN47F1uzrmLh6tpuXNNFo4SUlBMp_iUlpQJIikRe_0kSoFRRphJ49QtcNV1IK0lzuWREKQwJgj1UhCbG4LzZhrSk8GkAm50Ps_Nhdj5M7yPVXPaNu-XalT8VvYAEXOyByjn3_cxBcqYY_QJ4YYqm</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Chanwimaluang, T.</creator><creator>Guoliang Fan</creator><creator>Yen, G.G.</creator><creator>Fransen, S.R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20091101</creationdate><title>3-D Retinal Curvature Estimation</title><author>Chanwimaluang, T. ; Guoliang Fan ; Yen, G.G. ; Fransen, S.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-fa80096ff64f6e98aa0f0830688aec4d944b6c7fd75b879432e8a911d7817a5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Affine camera</topic><topic>Algorithms</topic><topic>bundle adjustment (BA)</topic><topic>Digital cameras</topic><topic>Diseases</topic><topic>Eyes &amp; eyesight</topic><topic>Geometrical optics</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>lens distortion</topic><topic>Lens, Crystalline - anatomy &amp; histology</topic><topic>Lenses</topic><topic>Models, Biological</topic><topic>Nonlinear distortion</topic><topic>Nonlinear optics</topic><topic>Optical distortion</topic><topic>Photography - methods</topic><topic>Reproducibility of Results</topic><topic>Retina</topic><topic>Retina - anatomy &amp; histology</topic><topic>retinal curvature estimation</topic><topic>structure from motion (SfM)</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chanwimaluang, T.</creatorcontrib><creatorcontrib>Guoliang Fan</creatorcontrib><creatorcontrib>Yen, G.G.</creatorcontrib><creatorcontrib>Fransen, S.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chanwimaluang, T.</au><au>Guoliang Fan</au><au>Yen, G.G.</au><au>Fransen, S.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3-D Retinal Curvature Estimation</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>TITB</stitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><date>2009-11-01</date><risdate>2009</risdate><volume>13</volume><issue>6</issue><spage>997</spage><epage>1005</epage><pages>997-1005</pages><issn>1089-7771</issn><issn>2168-2194</issn><eissn>1558-0032</eissn><eissn>2168-2208</eissn><coden>ITIBFX</coden><abstract>We study 3-D retinal curvature estimation from multiple images that provides the fundamental geometry of the human retina and could be used for 3-D retina visualization and disease diagnosis purposes. An affine camera model is used for 3-D reconstruction due to its simplicity, linearity, and robustness. A major challenge is that a series of optics is involved in the retinal imaging process, including an actual fundus camera, a digital camera, and the optics of the human eye, all of which cause significant nonlinear distortions in retinal images. In this paper, we develop a new constrained optimization method that considers both the geometric shape of the human retina and nonlinear lens distortions. Moreover, we examine a variety of lens distortion models to approximate the optics of the human eye in order to create a smooth spherical surface for curvature estimation. The experimental results on both synthetic data and real retinal images validate the proposed algorithm.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>19643714</pmid><doi>10.1109/TITB.2009.2027014</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7771
ispartof IEEE journal of biomedical and health informatics, 2009-11, Vol.13 (6), p.997-1005
issn 1089-7771
2168-2194
1558-0032
2168-2208
language eng
recordid cdi_proquest_miscellaneous_733612612
source IEEE Electronic Library (IEL)
subjects Affine camera
Algorithms
bundle adjustment (BA)
Digital cameras
Diseases
Eyes & eyesight
Geometrical optics
Humans
Imaging, Three-Dimensional - methods
lens distortion
Lens, Crystalline - anatomy & histology
Lenses
Models, Biological
Nonlinear distortion
Nonlinear optics
Optical distortion
Photography - methods
Reproducibility of Results
Retina
Retina - anatomy & histology
retinal curvature estimation
structure from motion (SfM)
Visualization
title 3-D Retinal Curvature Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3-D%20Retinal%20Curvature%20Estimation&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Chanwimaluang,%20T.&rft.date=2009-11-01&rft.volume=13&rft.issue=6&rft.spage=997&rft.epage=1005&rft.pages=997-1005&rft.issn=1089-7771&rft.eissn=1558-0032&rft.coden=ITIBFX&rft_id=info:doi/10.1109/TITB.2009.2027014&rft_dat=%3Cproquest_RIE%3E21338348%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857428801&rft_id=info:pmid/19643714&rft_ieee_id=5175484&rfr_iscdi=true