3-D Retinal Curvature Estimation

We study 3-D retinal curvature estimation from multiple images that provides the fundamental geometry of the human retina and could be used for 3-D retina visualization and disease diagnosis purposes. An affine camera model is used for 3-D reconstruction due to its simplicity, linearity, and robustn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2009-11, Vol.13 (6), p.997-1005
Hauptverfasser: Chanwimaluang, T., Guoliang Fan, Yen, G.G., Fransen, S.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study 3-D retinal curvature estimation from multiple images that provides the fundamental geometry of the human retina and could be used for 3-D retina visualization and disease diagnosis purposes. An affine camera model is used for 3-D reconstruction due to its simplicity, linearity, and robustness. A major challenge is that a series of optics is involved in the retinal imaging process, including an actual fundus camera, a digital camera, and the optics of the human eye, all of which cause significant nonlinear distortions in retinal images. In this paper, we develop a new constrained optimization method that considers both the geometric shape of the human retina and nonlinear lens distortions. Moreover, we examine a variety of lens distortion models to approximate the optics of the human eye in order to create a smooth spherical surface for curvature estimation. The experimental results on both synthetic data and real retinal images validate the proposed algorithm.
ISSN:1089-7771
2168-2194
1558-0032
2168-2208
DOI:10.1109/TITB.2009.2027014