Effect of changes in left ventricular anatomy and conduction velocity on the QRS voltage and morphology in left ventricular hypertrophy: a model study

Abstract The increased QRS voltage is considered to be a specific electrocardiogram (ECG) sign of left ventricular hypertrophy (LVH), and it is expected that the QRS voltage reflects the increase in left ventricular mass (LVM). However, the increased QRS voltage is only one of QRS patterns observed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electrocardiology 2010-05, Vol.43 (3), p.200-208
Hauptverfasser: Bacharova, Ljuba, MD, PhD, MBA, Szathmary, Vavrinec, RNDr, PhD, Kovalcik, Matej, Mgr, Mateasik, Anton, RNDr, PhD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The increased QRS voltage is considered to be a specific electrocardiogram (ECG) sign of left ventricular hypertrophy (LVH), and it is expected that the QRS voltage reflects the increase in left ventricular mass (LVM). However, the increased QRS voltage is only one of QRS patterns observed in patients with LVH. According to the solid angle theory, the resultant QRS voltage is influenced not only by spatial (anatomic) but also by nonspatial (electrophysiologic) determinants. In this study, we used a computer model to evaluate the effect of changes in anatomy and conduction velocity of the left ventricle on QRS complex characteristics. Material and Methods The model defines the geometry of cardiac ventricles analytically as parts of ellipsoids and allows to change dimensions of the ventricles, as well as the conduction velocity in the individual layers of myocardium. Three types of anatomic changes were simulated: concentric hypertrophy, eccentric hypertrophy, and dilatation. The conduction velocity was slowed in the inner layer of the left ventricle representing the Purkinje fiber mesh and in the layers representing the working myocardium. The outcomes of the model are presented as the time course of the spatial QRS vector magnitude, the vectorcardiographic QRS loops (VCGs) in horizontal, left sagittal, and frontal planes, as well as derived 12-lead ECGs. The following indicators of the 12-lead ECG were evaluated: the left axis deviation, the intrinsicoid deflection in V6, Cornell voltage, Cornell voltage-duration product, and Sokolow-Lyon index. Results The increase in LVM did not affect the QRS voltage proportionally, and the LVM and type of hypertrophy were not the only determinants of the QRS patterns. The conduction velocity slowing resulted in a spectrum of QRS patterns including increased QRS voltage and duration, left axis deviation, prolonged intrinsicoid deflection, VCG patterns of left bundle branch block, as well as pseudo-normal VCG/ECG patterns. The anatomic changes and conduction velocity slowing affected differently Sokolow-Lyon index and Cornell criteria. Conclusion We showed that the LVM is not the only determinant of the QRS complex changes in LVH, but it is rather a combination of anatomic and electric remodeling that creates the whole spectrum of the QRS complex changes seen in LVH patients. The slowed conduction velocity in the model heart produced QRS patterns consistent with changes described in LVH, even if the LVM was not
ISSN:0022-0736
1532-8430
DOI:10.1016/j.jelectrocard.2009.07.014