Generation, Capture, and Utilization of Industrial Carbon Dioxide

As a carbon‐based life form living in a predominantly carbon‐based environment, it is not surprising that we have created a carbon‐based consumer society. Our principle sources of energy are carbon‐based (coal, oil, and gas) and many of our consumer goods are derived from organic (i.e., carbon‐based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2010-03, Vol.3 (3), p.306-322
Hauptverfasser: Hunt, Andrew J., Sin, Emily H. K., Marriott, Ray, Clark, James H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a carbon‐based life form living in a predominantly carbon‐based environment, it is not surprising that we have created a carbon‐based consumer society. Our principle sources of energy are carbon‐based (coal, oil, and gas) and many of our consumer goods are derived from organic (i.e., carbon‐based) chemicals (including plastics, fabrics and materials, personal care and cleaning products, dyes, and coatings). Even our large‐volume inorganic‐chemicals‐based industries, including fertilizers and construction materials, rely on the consumption of carbon, notably in the form of large amounts of energy. The environmental problems which we now face and of which we are becoming increasingly aware result from a human‐induced disturbance in the natural carbon cycle of the Earth caused by transferring large quantities of terrestrial carbon (coal, oil, and gas) to the atmosphere, mostly in the form of carbon dioxide. Carbon is by no means the only element whose natural cycle we have disturbed: we are transferring significant quantities of elements including phosphorus, sulfur, copper, and platinum from natural sinks or ores built up over millions of years to unnatural fates in the form of what we refer to as waste or pollution. However, our complete dependence on the carbon cycle means that its disturbance deserves special attention, as is now manifest in indicators such as climate change and escalating public concern over global warming. As with all disturbances in materials balances, we can seek to alleviate the problem by (1) dematerialization: a reduction in consumption; (2) rematerialization: a change in what we consume; or (3) transmaterialization: changing our attitude towards resources and waste. The “low‐carbon” mantra that is popularly cited by organizations ranging from nongovernmental organizations to multinational companies and from local authorities to national governments is based on a combination of (1) and (2) (reducing carbon consumption though greater efficiency and lower per capita consumption, and replacing fossil energy sources with sources such as wind, wave, and solar, respectively). “Low carbon” is of inherently less value to the chemical and plastics industries at least in terms of raw materials although a version of (2), the use of biomass, does apply, especially if we use carbon sources that are renewable on a human timescale. There is however, another renewable, natural source of carbon that is widely available and for which greater util
ISSN:1864-5631
1864-564X
DOI:10.1002/cssc.200900169