Glucose induces expression of rat pyruvate carboxylase through a carbohydrate response element in the distal gene promoter
Pyruvate carboxylase is an enzyme of the so-called pyruvate cycling pathways, which have been proposed to contribute to glucose-stimulated insulin secretion in pancreatic beta-cells. In the rat insulinoma cell line 832/13, transcripts from both the distal and proximal gene promoter for pyruvate carb...
Gespeichert in:
Veröffentlicht in: | Biochemical journal 2010-03, Vol.426 (2), p.159-170 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pyruvate carboxylase is an enzyme of the so-called pyruvate cycling pathways, which have been proposed to contribute to glucose-stimulated insulin secretion in pancreatic beta-cells. In the rat insulinoma cell line 832/13, transcripts from both the distal and proximal gene promoter for pyruvate carboxylase are up-regulated by glucose, with pyruvate carboxylase being expressed mainly from the distal gene promoter. At position -408 to -392 relative to the transcription start site, the distal gene promoter was found to contain a ChoRE (carbohydrate response element). Its deletion abolishes glucose responsiveness of the promoter, and the sequence can mediate glucose responsiveness to a heterologous gene promoter. ChREBP (carbohydrate response element-binding protein) and its dimerization partner Mlx (Max-like protein X) bind to the ChoRE in vitro. ChREBP further binds to the distal promoter region at a high glucose concentration in situ. The E-box-binding transcription factors USF1/2 (upstream stimulatory factor 1/2) and E2A variant 2 [also known as E47 and TCF3 (transcription factor 3)] can also bind to the ChoRE. Overexpression of E2A diminishes the magnitude of the glucose response from the pyruvate carboxylase ChoRE. This illustrates that competition between ChREBP-Mlx and other factors binding to the ChoRE affects glucose responsiveness. We conclude that a ChoRE in the distal gene promoter contributes to the glucose-mediated expression of pyruvate carboxylase. |
---|---|
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/BJ20091266 |