Glenohumeral stability in simulated rotator cuff tears

Abstract Rotator cuff tears disrupt the force balance in the shoulder and the glenohumeral joint in particular, resulting in compromised arm elevation torques. The trade-off between glenohumeral torque and glenohumeral stability is not yet understood. We hypothesize that compensation of lost abducti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2009-08, Vol.42 (11), p.1740-1745
Hauptverfasser: Steenbrink, F, de Groot, J.H, Veeger, H.E.J, van der Helm, F.C.T, Rozing, P.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Rotator cuff tears disrupt the force balance in the shoulder and the glenohumeral joint in particular, resulting in compromised arm elevation torques. The trade-off between glenohumeral torque and glenohumeral stability is not yet understood. We hypothesize that compensation of lost abduction torque will lead to a superior redirection of the reaction force vector onto the glenoid surface, which will require additional muscle forces to maintain glenohumeral stability. Muscle forces in a single arm position for five combinations of simulated cuff tears were estimated by inverse dynamic simulation (Delft Shoulder and Elbow Model) and compared with muscle forces in the non-injured condition. Each cuff tear condition was simulated both without and with an active modeling constraint for glenohumeral stability, which was defined as the condition in which the glenohumeral reaction force intersects the glenoid surface. For the simulated position an isolated tear of the supraspinatus only increased the effort of the other muscles with 8%, and did not introduce instability. For massive cuff tears beyond the supraspinatus, instability became a prominent factor: the deltoids were not able to fully compensate lost net abduction torque without introducing destabilizing forces; unfavorable abductor muscles (i.e. in the simulated position the subscapularis and the biceps longum) remain to compensate the necessary abduction torque; the teres minor appeared to be of vital importance to maintain glenohumeral stability. Adverse adductor muscle co-contraction is essential to preserve glenohumeral stability.
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2009.04.011