Inverse Method to Estimate Kinetic Degradation Parameters of Grape Anthocyanins in Wheat Flour Under Simultaneously Changing Temperature and Moisture
Thermal and moisture effects on grape anthocyanin degradation were investigated using solid media to simulate processing at temperatures above 100 °C. Grape pomace (anthocyanin source) mixed with wheat pastry flour (1: 3, w/w dry basis) was used in both isothermal and nonisothermal experiments by he...
Gespeichert in:
Veröffentlicht in: | Journal of food science 2009-06, Vol.74 (5), p.E241-E249 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E249 |
---|---|
container_issue | 5 |
container_start_page | E241 |
container_title | Journal of food science |
container_volume | 74 |
creator | Lai, K.P.K. Dolan, K.D. Ng, P.K.W. |
description | Thermal and moisture effects on grape anthocyanin degradation were investigated using solid media to simulate processing at temperatures above 100 °C. Grape pomace (anthocyanin source) mixed with wheat pastry flour (1: 3, w/w dry basis) was used in both isothermal and nonisothermal experiments by heating the same mixture at 43% (db) initial moisture in steel cells in an oil bath at 80, 105, and 145 °C. To determine the effect of moisture on anthocyanin degradation, the grape pomace–wheat flour mixture was heated isothermally at 80 °C at constant moisture contents of 10%, 20%, and 43% (db). Anthocyanin degradation followed a pseudo first‐order reaction with moisture. Anthocyanins degraded more rapidly with increasing temperature and moisture. The effects of temperature and moisture on the rate constant were modeled according to the Arrhenius and an exponential relationship, respectively. The nonisothermal reaction rate constant and activation energy (mean ± standard error) were k80 °C, 43% (db) moisture = 2.81 × 10−4± 1.1 × 10−6 s−1 and ΔE = 75273 ± 197 J/g mol, respectively. The moisture parameter for the exponential model was 4.28 (dry basis moisture content)−1. One possible application of this study is as a tool to predict the loss of anthocyanins in nutraceutical products containing grape pomace. For example, if the process temperature history and moisture history in an extruded snack fortified with grape pomace is known, the percentage anthocyanin loss can be predicted. |
doi_str_mv | 10.1111/j.1750-3841.2009.01171.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733572765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733572765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4641-9a2ee97034028ea9ab9109a0086ad2132d3e794887ac9d62bc576f1a54c0dbf43</originalsourceid><addsrcrecordid>eNqNkV9v0zAUxSMEYmXwFZCFhHhK8Z8kjl-Qpm7tBh0MrdMerdvkpnVJnGIn0H4Qvi8OrYrEE36xr_w7R8c-UUQYHbOw3m_GTKY0FnnCxpxSNaaMSTbePYlGp4un0YhSzmPGEnkWvfB-Q4dZZM-jM6ayJKNCjaJfN_YHOo_kFrt1W5KuJVe-Mw10SD4Zi50pyCWuHJTQmdaSO3DQYBckpK3IzMEWyYUN0mIP1lhPjCWPa4SOTOu2d-TBlujIvWn6ugOLbe_rPZmswa6MXZEFNlt00PUOCdiS3LbGD8PL6FkFtcdXx_08epheLSbX8fzL7GZyMY-LJEtYrIAjKklFQnmOoGCpGFVAaZ5ByZngpUCpkjyXUKgy48silVnFIE0KWi6rRJxH7w6-W9d-79F3ujG-wLo-RNVSiFRymaWBfPMPuQnPsyGcZipJhFK5DFB-gArXeu-w0lsXvtLtNaN6KE5v9NCPHvrRQ3H6T3F6F6Svj_79ssHyr_DYVADeHgHwBdSVA1sYf-I4SzOeZzxwHw7cT1Pj_r8D6I_Ty_vhGAzig0GoAncnA3DfdCaFTPXj55lWX2maLu7m-lr8BoicxHM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194439987</pqid></control><display><type>article</type><title>Inverse Method to Estimate Kinetic Degradation Parameters of Grape Anthocyanins in Wheat Flour Under Simultaneously Changing Temperature and Moisture</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lai, K.P.K. ; Dolan, K.D. ; Ng, P.K.W.</creator><creatorcontrib>Lai, K.P.K. ; Dolan, K.D. ; Ng, P.K.W.</creatorcontrib><description>Thermal and moisture effects on grape anthocyanin degradation were investigated using solid media to simulate processing at temperatures above 100 °C. Grape pomace (anthocyanin source) mixed with wheat pastry flour (1: 3, w/w dry basis) was used in both isothermal and nonisothermal experiments by heating the same mixture at 43% (db) initial moisture in steel cells in an oil bath at 80, 105, and 145 °C. To determine the effect of moisture on anthocyanin degradation, the grape pomace–wheat flour mixture was heated isothermally at 80 °C at constant moisture contents of 10%, 20%, and 43% (db). Anthocyanin degradation followed a pseudo first‐order reaction with moisture. Anthocyanins degraded more rapidly with increasing temperature and moisture. The effects of temperature and moisture on the rate constant were modeled according to the Arrhenius and an exponential relationship, respectively. The nonisothermal reaction rate constant and activation energy (mean ± standard error) were k80 °C, 43% (db) moisture = 2.81 × 10−4± 1.1 × 10−6 s−1 and ΔE = 75273 ± 197 J/g mol, respectively. The moisture parameter for the exponential model was 4.28 (dry basis moisture content)−1. One possible application of this study is as a tool to predict the loss of anthocyanins in nutraceutical products containing grape pomace. For example, if the process temperature history and moisture history in an extruded snack fortified with grape pomace is known, the percentage anthocyanin loss can be predicted.</description><identifier>ISSN: 0022-1147</identifier><identifier>EISSN: 1750-3841</identifier><identifier>DOI: 10.1111/j.1750-3841.2009.01171.x</identifier><identifier>PMID: 19646039</identifier><identifier>CODEN: JFDSAZ</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>anthocyanins ; Anthocyanins - metabolism ; Biological and medical sciences ; Cereal and baking product industries ; Citrus fruits ; Effects ; Flour ; Food Handling - methods ; Food industries ; Food science ; Fruit and vegetable industries ; Fundamental and applied biological sciences. Psychology ; Hot Temperature ; isothermal ; Kinetics ; Models, Theoretical ; moisture content ; nonisothermal ; Studies ; Temperature ; thermal degradation ; Thermodynamics ; Time Factors ; Triticum ; Vitis - metabolism ; Water ; Wheat</subject><ispartof>Journal of food science, 2009-06, Vol.74 (5), p.E241-E249</ispartof><rights>2009 Institute of Food Technologists</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Institute of Food Technologists Jun/Jul 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4641-9a2ee97034028ea9ab9109a0086ad2132d3e794887ac9d62bc576f1a54c0dbf43</citedby><cites>FETCH-LOGICAL-c4641-9a2ee97034028ea9ab9109a0086ad2132d3e794887ac9d62bc576f1a54c0dbf43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1750-3841.2009.01171.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1750-3841.2009.01171.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21562862$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19646039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lai, K.P.K.</creatorcontrib><creatorcontrib>Dolan, K.D.</creatorcontrib><creatorcontrib>Ng, P.K.W.</creatorcontrib><title>Inverse Method to Estimate Kinetic Degradation Parameters of Grape Anthocyanins in Wheat Flour Under Simultaneously Changing Temperature and Moisture</title><title>Journal of food science</title><addtitle>J Food Sci</addtitle><description>Thermal and moisture effects on grape anthocyanin degradation were investigated using solid media to simulate processing at temperatures above 100 °C. Grape pomace (anthocyanin source) mixed with wheat pastry flour (1: 3, w/w dry basis) was used in both isothermal and nonisothermal experiments by heating the same mixture at 43% (db) initial moisture in steel cells in an oil bath at 80, 105, and 145 °C. To determine the effect of moisture on anthocyanin degradation, the grape pomace–wheat flour mixture was heated isothermally at 80 °C at constant moisture contents of 10%, 20%, and 43% (db). Anthocyanin degradation followed a pseudo first‐order reaction with moisture. Anthocyanins degraded more rapidly with increasing temperature and moisture. The effects of temperature and moisture on the rate constant were modeled according to the Arrhenius and an exponential relationship, respectively. The nonisothermal reaction rate constant and activation energy (mean ± standard error) were k80 °C, 43% (db) moisture = 2.81 × 10−4± 1.1 × 10−6 s−1 and ΔE = 75273 ± 197 J/g mol, respectively. The moisture parameter for the exponential model was 4.28 (dry basis moisture content)−1. One possible application of this study is as a tool to predict the loss of anthocyanins in nutraceutical products containing grape pomace. For example, if the process temperature history and moisture history in an extruded snack fortified with grape pomace is known, the percentage anthocyanin loss can be predicted.</description><subject>anthocyanins</subject><subject>Anthocyanins - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cereal and baking product industries</subject><subject>Citrus fruits</subject><subject>Effects</subject><subject>Flour</subject><subject>Food Handling - methods</subject><subject>Food industries</subject><subject>Food science</subject><subject>Fruit and vegetable industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hot Temperature</subject><subject>isothermal</subject><subject>Kinetics</subject><subject>Models, Theoretical</subject><subject>moisture content</subject><subject>nonisothermal</subject><subject>Studies</subject><subject>Temperature</subject><subject>thermal degradation</subject><subject>Thermodynamics</subject><subject>Time Factors</subject><subject>Triticum</subject><subject>Vitis - metabolism</subject><subject>Water</subject><subject>Wheat</subject><issn>0022-1147</issn><issn>1750-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV9v0zAUxSMEYmXwFZCFhHhK8Z8kjl-Qpm7tBh0MrdMerdvkpnVJnGIn0H4Qvi8OrYrEE36xr_w7R8c-UUQYHbOw3m_GTKY0FnnCxpxSNaaMSTbePYlGp4un0YhSzmPGEnkWvfB-Q4dZZM-jM6ayJKNCjaJfN_YHOo_kFrt1W5KuJVe-Mw10SD4Zi50pyCWuHJTQmdaSO3DQYBckpK3IzMEWyYUN0mIP1lhPjCWPa4SOTOu2d-TBlujIvWn6ugOLbe_rPZmswa6MXZEFNlt00PUOCdiS3LbGD8PL6FkFtcdXx_08epheLSbX8fzL7GZyMY-LJEtYrIAjKklFQnmOoGCpGFVAaZ5ByZngpUCpkjyXUKgy48silVnFIE0KWi6rRJxH7w6-W9d-79F3ujG-wLo-RNVSiFRymaWBfPMPuQnPsyGcZipJhFK5DFB-gArXeu-w0lsXvtLtNaN6KE5v9NCPHvrRQ3H6T3F6F6Svj_79ssHyr_DYVADeHgHwBdSVA1sYf-I4SzOeZzxwHw7cT1Pj_r8D6I_Ty_vhGAzig0GoAncnA3DfdCaFTPXj55lWX2maLu7m-lr8BoicxHM</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Lai, K.P.K.</creator><creator>Dolan, K.D.</creator><creator>Ng, P.K.W.</creator><general>Blackwell Publishing Inc</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QR</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>200906</creationdate><title>Inverse Method to Estimate Kinetic Degradation Parameters of Grape Anthocyanins in Wheat Flour Under Simultaneously Changing Temperature and Moisture</title><author>Lai, K.P.K. ; Dolan, K.D. ; Ng, P.K.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4641-9a2ee97034028ea9ab9109a0086ad2132d3e794887ac9d62bc576f1a54c0dbf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>anthocyanins</topic><topic>Anthocyanins - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cereal and baking product industries</topic><topic>Citrus fruits</topic><topic>Effects</topic><topic>Flour</topic><topic>Food Handling - methods</topic><topic>Food industries</topic><topic>Food science</topic><topic>Fruit and vegetable industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hot Temperature</topic><topic>isothermal</topic><topic>Kinetics</topic><topic>Models, Theoretical</topic><topic>moisture content</topic><topic>nonisothermal</topic><topic>Studies</topic><topic>Temperature</topic><topic>thermal degradation</topic><topic>Thermodynamics</topic><topic>Time Factors</topic><topic>Triticum</topic><topic>Vitis - metabolism</topic><topic>Water</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, K.P.K.</creatorcontrib><creatorcontrib>Dolan, K.D.</creatorcontrib><creatorcontrib>Ng, P.K.W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of food science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, K.P.K.</au><au>Dolan, K.D.</au><au>Ng, P.K.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse Method to Estimate Kinetic Degradation Parameters of Grape Anthocyanins in Wheat Flour Under Simultaneously Changing Temperature and Moisture</atitle><jtitle>Journal of food science</jtitle><addtitle>J Food Sci</addtitle><date>2009-06</date><risdate>2009</risdate><volume>74</volume><issue>5</issue><spage>E241</spage><epage>E249</epage><pages>E241-E249</pages><issn>0022-1147</issn><eissn>1750-3841</eissn><coden>JFDSAZ</coden><abstract>Thermal and moisture effects on grape anthocyanin degradation were investigated using solid media to simulate processing at temperatures above 100 °C. Grape pomace (anthocyanin source) mixed with wheat pastry flour (1: 3, w/w dry basis) was used in both isothermal and nonisothermal experiments by heating the same mixture at 43% (db) initial moisture in steel cells in an oil bath at 80, 105, and 145 °C. To determine the effect of moisture on anthocyanin degradation, the grape pomace–wheat flour mixture was heated isothermally at 80 °C at constant moisture contents of 10%, 20%, and 43% (db). Anthocyanin degradation followed a pseudo first‐order reaction with moisture. Anthocyanins degraded more rapidly with increasing temperature and moisture. The effects of temperature and moisture on the rate constant were modeled according to the Arrhenius and an exponential relationship, respectively. The nonisothermal reaction rate constant and activation energy (mean ± standard error) were k80 °C, 43% (db) moisture = 2.81 × 10−4± 1.1 × 10−6 s−1 and ΔE = 75273 ± 197 J/g mol, respectively. The moisture parameter for the exponential model was 4.28 (dry basis moisture content)−1. One possible application of this study is as a tool to predict the loss of anthocyanins in nutraceutical products containing grape pomace. For example, if the process temperature history and moisture history in an extruded snack fortified with grape pomace is known, the percentage anthocyanin loss can be predicted.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>19646039</pmid><doi>10.1111/j.1750-3841.2009.01171.x</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1147 |
ispartof | Journal of food science, 2009-06, Vol.74 (5), p.E241-E249 |
issn | 0022-1147 1750-3841 |
language | eng |
recordid | cdi_proquest_miscellaneous_733572765 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | anthocyanins Anthocyanins - metabolism Biological and medical sciences Cereal and baking product industries Citrus fruits Effects Flour Food Handling - methods Food industries Food science Fruit and vegetable industries Fundamental and applied biological sciences. Psychology Hot Temperature isothermal Kinetics Models, Theoretical moisture content nonisothermal Studies Temperature thermal degradation Thermodynamics Time Factors Triticum Vitis - metabolism Water Wheat |
title | Inverse Method to Estimate Kinetic Degradation Parameters of Grape Anthocyanins in Wheat Flour Under Simultaneously Changing Temperature and Moisture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A26%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20Method%20to%20Estimate%20Kinetic%20Degradation%20Parameters%20of%20Grape%20Anthocyanins%20in%20Wheat%20Flour%20Under%20Simultaneously%20Changing%20Temperature%20and%20Moisture&rft.jtitle=Journal%20of%20food%20science&rft.au=Lai,%20K.P.K.&rft.date=2009-06&rft.volume=74&rft.issue=5&rft.spage=E241&rft.epage=E249&rft.pages=E241-E249&rft.issn=0022-1147&rft.eissn=1750-3841&rft.coden=JFDSAZ&rft_id=info:doi/10.1111/j.1750-3841.2009.01171.x&rft_dat=%3Cproquest_cross%3E733572765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194439987&rft_id=info:pmid/19646039&rfr_iscdi=true |