Inverse Method to Estimate Kinetic Degradation Parameters of Grape Anthocyanins in Wheat Flour Under Simultaneously Changing Temperature and Moisture

Thermal and moisture effects on grape anthocyanin degradation were investigated using solid media to simulate processing at temperatures above 100 °C. Grape pomace (anthocyanin source) mixed with wheat pastry flour (1: 3, w/w dry basis) was used in both isothermal and nonisothermal experiments by he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of food science 2009-06, Vol.74 (5), p.E241-E249
Hauptverfasser: Lai, K.P.K., Dolan, K.D., Ng, P.K.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E249
container_issue 5
container_start_page E241
container_title Journal of food science
container_volume 74
creator Lai, K.P.K.
Dolan, K.D.
Ng, P.K.W.
description Thermal and moisture effects on grape anthocyanin degradation were investigated using solid media to simulate processing at temperatures above 100 °C. Grape pomace (anthocyanin source) mixed with wheat pastry flour (1: 3, w/w dry basis) was used in both isothermal and nonisothermal experiments by heating the same mixture at 43% (db) initial moisture in steel cells in an oil bath at 80, 105, and 145 °C. To determine the effect of moisture on anthocyanin degradation, the grape pomace–wheat flour mixture was heated isothermally at 80 °C at constant moisture contents of 10%, 20%, and 43% (db). Anthocyanin degradation followed a pseudo first‐order reaction with moisture. Anthocyanins degraded more rapidly with increasing temperature and moisture. The effects of temperature and moisture on the rate constant were modeled according to the Arrhenius and an exponential relationship, respectively. The nonisothermal reaction rate constant and activation energy (mean ± standard error) were k80 °C, 43% (db) moisture = 2.81 × 10−4± 1.1 × 10−6 s−1 and ΔE = 75273 ± 197 J/g mol, respectively. The moisture parameter for the exponential model was 4.28 (dry basis moisture content)−1. One possible application of this study is as a tool to predict the loss of anthocyanins in nutraceutical products containing grape pomace. For example, if the process temperature history and moisture history in an extruded snack fortified with grape pomace is known, the percentage anthocyanin loss can be predicted.
doi_str_mv 10.1111/j.1750-3841.2009.01171.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733572765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733572765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4641-9a2ee97034028ea9ab9109a0086ad2132d3e794887ac9d62bc576f1a54c0dbf43</originalsourceid><addsrcrecordid>eNqNkV9v0zAUxSMEYmXwFZCFhHhK8Z8kjl-Qpm7tBh0MrdMerdvkpnVJnGIn0H4Qvi8OrYrEE36xr_w7R8c-UUQYHbOw3m_GTKY0FnnCxpxSNaaMSTbePYlGp4un0YhSzmPGEnkWvfB-Q4dZZM-jM6ayJKNCjaJfN_YHOo_kFrt1W5KuJVe-Mw10SD4Zi50pyCWuHJTQmdaSO3DQYBckpK3IzMEWyYUN0mIP1lhPjCWPa4SOTOu2d-TBlujIvWn6ugOLbe_rPZmswa6MXZEFNlt00PUOCdiS3LbGD8PL6FkFtcdXx_08epheLSbX8fzL7GZyMY-LJEtYrIAjKklFQnmOoGCpGFVAaZ5ByZngpUCpkjyXUKgy48silVnFIE0KWi6rRJxH7w6-W9d-79F3ujG-wLo-RNVSiFRymaWBfPMPuQnPsyGcZipJhFK5DFB-gArXeu-w0lsXvtLtNaN6KE5v9NCPHvrRQ3H6T3F6F6Svj_79ssHyr_DYVADeHgHwBdSVA1sYf-I4SzOeZzxwHw7cT1Pj_r8D6I_Ty_vhGAzig0GoAncnA3DfdCaFTPXj55lWX2maLu7m-lr8BoicxHM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194439987</pqid></control><display><type>article</type><title>Inverse Method to Estimate Kinetic Degradation Parameters of Grape Anthocyanins in Wheat Flour Under Simultaneously Changing Temperature and Moisture</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lai, K.P.K. ; Dolan, K.D. ; Ng, P.K.W.</creator><creatorcontrib>Lai, K.P.K. ; Dolan, K.D. ; Ng, P.K.W.</creatorcontrib><description>Thermal and moisture effects on grape anthocyanin degradation were investigated using solid media to simulate processing at temperatures above 100 °C. Grape pomace (anthocyanin source) mixed with wheat pastry flour (1: 3, w/w dry basis) was used in both isothermal and nonisothermal experiments by heating the same mixture at 43% (db) initial moisture in steel cells in an oil bath at 80, 105, and 145 °C. To determine the effect of moisture on anthocyanin degradation, the grape pomace–wheat flour mixture was heated isothermally at 80 °C at constant moisture contents of 10%, 20%, and 43% (db). Anthocyanin degradation followed a pseudo first‐order reaction with moisture. Anthocyanins degraded more rapidly with increasing temperature and moisture. The effects of temperature and moisture on the rate constant were modeled according to the Arrhenius and an exponential relationship, respectively. The nonisothermal reaction rate constant and activation energy (mean ± standard error) were k80 °C, 43% (db) moisture = 2.81 × 10−4± 1.1 × 10−6 s−1 and ΔE = 75273 ± 197 J/g mol, respectively. The moisture parameter for the exponential model was 4.28 (dry basis moisture content)−1. One possible application of this study is as a tool to predict the loss of anthocyanins in nutraceutical products containing grape pomace. For example, if the process temperature history and moisture history in an extruded snack fortified with grape pomace is known, the percentage anthocyanin loss can be predicted.</description><identifier>ISSN: 0022-1147</identifier><identifier>EISSN: 1750-3841</identifier><identifier>DOI: 10.1111/j.1750-3841.2009.01171.x</identifier><identifier>PMID: 19646039</identifier><identifier>CODEN: JFDSAZ</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>anthocyanins ; Anthocyanins - metabolism ; Biological and medical sciences ; Cereal and baking product industries ; Citrus fruits ; Effects ; Flour ; Food Handling - methods ; Food industries ; Food science ; Fruit and vegetable industries ; Fundamental and applied biological sciences. Psychology ; Hot Temperature ; isothermal ; Kinetics ; Models, Theoretical ; moisture content ; nonisothermal ; Studies ; Temperature ; thermal degradation ; Thermodynamics ; Time Factors ; Triticum ; Vitis - metabolism ; Water ; Wheat</subject><ispartof>Journal of food science, 2009-06, Vol.74 (5), p.E241-E249</ispartof><rights>2009 Institute of Food Technologists</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Institute of Food Technologists Jun/Jul 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4641-9a2ee97034028ea9ab9109a0086ad2132d3e794887ac9d62bc576f1a54c0dbf43</citedby><cites>FETCH-LOGICAL-c4641-9a2ee97034028ea9ab9109a0086ad2132d3e794887ac9d62bc576f1a54c0dbf43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1750-3841.2009.01171.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1750-3841.2009.01171.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21562862$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19646039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lai, K.P.K.</creatorcontrib><creatorcontrib>Dolan, K.D.</creatorcontrib><creatorcontrib>Ng, P.K.W.</creatorcontrib><title>Inverse Method to Estimate Kinetic Degradation Parameters of Grape Anthocyanins in Wheat Flour Under Simultaneously Changing Temperature and Moisture</title><title>Journal of food science</title><addtitle>J Food Sci</addtitle><description>Thermal and moisture effects on grape anthocyanin degradation were investigated using solid media to simulate processing at temperatures above 100 °C. Grape pomace (anthocyanin source) mixed with wheat pastry flour (1: 3, w/w dry basis) was used in both isothermal and nonisothermal experiments by heating the same mixture at 43% (db) initial moisture in steel cells in an oil bath at 80, 105, and 145 °C. To determine the effect of moisture on anthocyanin degradation, the grape pomace–wheat flour mixture was heated isothermally at 80 °C at constant moisture contents of 10%, 20%, and 43% (db). Anthocyanin degradation followed a pseudo first‐order reaction with moisture. Anthocyanins degraded more rapidly with increasing temperature and moisture. The effects of temperature and moisture on the rate constant were modeled according to the Arrhenius and an exponential relationship, respectively. The nonisothermal reaction rate constant and activation energy (mean ± standard error) were k80 °C, 43% (db) moisture = 2.81 × 10−4± 1.1 × 10−6 s−1 and ΔE = 75273 ± 197 J/g mol, respectively. The moisture parameter for the exponential model was 4.28 (dry basis moisture content)−1. One possible application of this study is as a tool to predict the loss of anthocyanins in nutraceutical products containing grape pomace. For example, if the process temperature history and moisture history in an extruded snack fortified with grape pomace is known, the percentage anthocyanin loss can be predicted.</description><subject>anthocyanins</subject><subject>Anthocyanins - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cereal and baking product industries</subject><subject>Citrus fruits</subject><subject>Effects</subject><subject>Flour</subject><subject>Food Handling - methods</subject><subject>Food industries</subject><subject>Food science</subject><subject>Fruit and vegetable industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hot Temperature</subject><subject>isothermal</subject><subject>Kinetics</subject><subject>Models, Theoretical</subject><subject>moisture content</subject><subject>nonisothermal</subject><subject>Studies</subject><subject>Temperature</subject><subject>thermal degradation</subject><subject>Thermodynamics</subject><subject>Time Factors</subject><subject>Triticum</subject><subject>Vitis - metabolism</subject><subject>Water</subject><subject>Wheat</subject><issn>0022-1147</issn><issn>1750-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV9v0zAUxSMEYmXwFZCFhHhK8Z8kjl-Qpm7tBh0MrdMerdvkpnVJnGIn0H4Qvi8OrYrEE36xr_w7R8c-UUQYHbOw3m_GTKY0FnnCxpxSNaaMSTbePYlGp4un0YhSzmPGEnkWvfB-Q4dZZM-jM6ayJKNCjaJfN_YHOo_kFrt1W5KuJVe-Mw10SD4Zi50pyCWuHJTQmdaSO3DQYBckpK3IzMEWyYUN0mIP1lhPjCWPa4SOTOu2d-TBlujIvWn6ugOLbe_rPZmswa6MXZEFNlt00PUOCdiS3LbGD8PL6FkFtcdXx_08epheLSbX8fzL7GZyMY-LJEtYrIAjKklFQnmOoGCpGFVAaZ5ByZngpUCpkjyXUKgy48silVnFIE0KWi6rRJxH7w6-W9d-79F3ujG-wLo-RNVSiFRymaWBfPMPuQnPsyGcZipJhFK5DFB-gArXeu-w0lsXvtLtNaN6KE5v9NCPHvrRQ3H6T3F6F6Svj_79ssHyr_DYVADeHgHwBdSVA1sYf-I4SzOeZzxwHw7cT1Pj_r8D6I_Ty_vhGAzig0GoAncnA3DfdCaFTPXj55lWX2maLu7m-lr8BoicxHM</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Lai, K.P.K.</creator><creator>Dolan, K.D.</creator><creator>Ng, P.K.W.</creator><general>Blackwell Publishing Inc</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QR</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>200906</creationdate><title>Inverse Method to Estimate Kinetic Degradation Parameters of Grape Anthocyanins in Wheat Flour Under Simultaneously Changing Temperature and Moisture</title><author>Lai, K.P.K. ; Dolan, K.D. ; Ng, P.K.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4641-9a2ee97034028ea9ab9109a0086ad2132d3e794887ac9d62bc576f1a54c0dbf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>anthocyanins</topic><topic>Anthocyanins - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cereal and baking product industries</topic><topic>Citrus fruits</topic><topic>Effects</topic><topic>Flour</topic><topic>Food Handling - methods</topic><topic>Food industries</topic><topic>Food science</topic><topic>Fruit and vegetable industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hot Temperature</topic><topic>isothermal</topic><topic>Kinetics</topic><topic>Models, Theoretical</topic><topic>moisture content</topic><topic>nonisothermal</topic><topic>Studies</topic><topic>Temperature</topic><topic>thermal degradation</topic><topic>Thermodynamics</topic><topic>Time Factors</topic><topic>Triticum</topic><topic>Vitis - metabolism</topic><topic>Water</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, K.P.K.</creatorcontrib><creatorcontrib>Dolan, K.D.</creatorcontrib><creatorcontrib>Ng, P.K.W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of food science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, K.P.K.</au><au>Dolan, K.D.</au><au>Ng, P.K.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse Method to Estimate Kinetic Degradation Parameters of Grape Anthocyanins in Wheat Flour Under Simultaneously Changing Temperature and Moisture</atitle><jtitle>Journal of food science</jtitle><addtitle>J Food Sci</addtitle><date>2009-06</date><risdate>2009</risdate><volume>74</volume><issue>5</issue><spage>E241</spage><epage>E249</epage><pages>E241-E249</pages><issn>0022-1147</issn><eissn>1750-3841</eissn><coden>JFDSAZ</coden><abstract>Thermal and moisture effects on grape anthocyanin degradation were investigated using solid media to simulate processing at temperatures above 100 °C. Grape pomace (anthocyanin source) mixed with wheat pastry flour (1: 3, w/w dry basis) was used in both isothermal and nonisothermal experiments by heating the same mixture at 43% (db) initial moisture in steel cells in an oil bath at 80, 105, and 145 °C. To determine the effect of moisture on anthocyanin degradation, the grape pomace–wheat flour mixture was heated isothermally at 80 °C at constant moisture contents of 10%, 20%, and 43% (db). Anthocyanin degradation followed a pseudo first‐order reaction with moisture. Anthocyanins degraded more rapidly with increasing temperature and moisture. The effects of temperature and moisture on the rate constant were modeled according to the Arrhenius and an exponential relationship, respectively. The nonisothermal reaction rate constant and activation energy (mean ± standard error) were k80 °C, 43% (db) moisture = 2.81 × 10−4± 1.1 × 10−6 s−1 and ΔE = 75273 ± 197 J/g mol, respectively. The moisture parameter for the exponential model was 4.28 (dry basis moisture content)−1. One possible application of this study is as a tool to predict the loss of anthocyanins in nutraceutical products containing grape pomace. For example, if the process temperature history and moisture history in an extruded snack fortified with grape pomace is known, the percentage anthocyanin loss can be predicted.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>19646039</pmid><doi>10.1111/j.1750-3841.2009.01171.x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1147
ispartof Journal of food science, 2009-06, Vol.74 (5), p.E241-E249
issn 0022-1147
1750-3841
language eng
recordid cdi_proquest_miscellaneous_733572765
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects anthocyanins
Anthocyanins - metabolism
Biological and medical sciences
Cereal and baking product industries
Citrus fruits
Effects
Flour
Food Handling - methods
Food industries
Food science
Fruit and vegetable industries
Fundamental and applied biological sciences. Psychology
Hot Temperature
isothermal
Kinetics
Models, Theoretical
moisture content
nonisothermal
Studies
Temperature
thermal degradation
Thermodynamics
Time Factors
Triticum
Vitis - metabolism
Water
Wheat
title Inverse Method to Estimate Kinetic Degradation Parameters of Grape Anthocyanins in Wheat Flour Under Simultaneously Changing Temperature and Moisture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A26%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20Method%20to%20Estimate%20Kinetic%20Degradation%20Parameters%20of%20Grape%20Anthocyanins%20in%20Wheat%20Flour%20Under%20Simultaneously%20Changing%20Temperature%20and%20Moisture&rft.jtitle=Journal%20of%20food%20science&rft.au=Lai,%20K.P.K.&rft.date=2009-06&rft.volume=74&rft.issue=5&rft.spage=E241&rft.epage=E249&rft.pages=E241-E249&rft.issn=0022-1147&rft.eissn=1750-3841&rft.coden=JFDSAZ&rft_id=info:doi/10.1111/j.1750-3841.2009.01171.x&rft_dat=%3Cproquest_cross%3E733572765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194439987&rft_id=info:pmid/19646039&rfr_iscdi=true