Inverse Method to Estimate Kinetic Degradation Parameters of Grape Anthocyanins in Wheat Flour Under Simultaneously Changing Temperature and Moisture

Thermal and moisture effects on grape anthocyanin degradation were investigated using solid media to simulate processing at temperatures above 100 °C. Grape pomace (anthocyanin source) mixed with wheat pastry flour (1: 3, w/w dry basis) was used in both isothermal and nonisothermal experiments by he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of food science 2009-06, Vol.74 (5), p.E241-E249
Hauptverfasser: Lai, K.P.K., Dolan, K.D., Ng, P.K.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thermal and moisture effects on grape anthocyanin degradation were investigated using solid media to simulate processing at temperatures above 100 °C. Grape pomace (anthocyanin source) mixed with wheat pastry flour (1: 3, w/w dry basis) was used in both isothermal and nonisothermal experiments by heating the same mixture at 43% (db) initial moisture in steel cells in an oil bath at 80, 105, and 145 °C. To determine the effect of moisture on anthocyanin degradation, the grape pomace–wheat flour mixture was heated isothermally at 80 °C at constant moisture contents of 10%, 20%, and 43% (db). Anthocyanin degradation followed a pseudo first‐order reaction with moisture. Anthocyanins degraded more rapidly with increasing temperature and moisture. The effects of temperature and moisture on the rate constant were modeled according to the Arrhenius and an exponential relationship, respectively. The nonisothermal reaction rate constant and activation energy (mean ± standard error) were k80 °C, 43% (db) moisture = 2.81 × 10−4± 1.1 × 10−6 s−1 and ΔE = 75273 ± 197 J/g mol, respectively. The moisture parameter for the exponential model was 4.28 (dry basis moisture content)−1. One possible application of this study is as a tool to predict the loss of anthocyanins in nutraceutical products containing grape pomace. For example, if the process temperature history and moisture history in an extruded snack fortified with grape pomace is known, the percentage anthocyanin loss can be predicted.
ISSN:0022-1147
1750-3841
DOI:10.1111/j.1750-3841.2009.01171.x