A quantum cascade laser cw cavity ringdown spectrometer coupled to a supersonic expansion source
A new instrument has been constructed that couples a supersonic expansion source to a continuous wave cavity ringdown spectrometer using a Fabry-Perot quantum cascade laser (QCL). The purpose of the instrument is to enable the acquisition of a cold, rotationally resolved gas phase spectrum of buckmi...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2010-06, Vol.81 (6), p.063102-063102 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new instrument has been constructed that couples a supersonic expansion source to a continuous wave cavity ringdown spectrometer using a Fabry-Perot quantum cascade laser (QCL). The purpose of the instrument is to enable the acquisition of a cold, rotationally resolved gas phase spectrum of buckminsterfullerene (C(60)). As a first test of the system, high resolution spectra of the nu(8) vibrational band of CH(2)Br(2) have been acquired at approximately 1197 cm(-1). To our knowledge, this is the first time that a vibrational band not previously recorded with rotational resolution has been acquired with a QCL-based ringdown spectrometer. 62 transitions of the three isotopologues of CH(2)Br(2) were assigned and fit to effective Hamiltonians with a standard deviation of 14 MHz, which is smaller than the laser frequency step size. The spectra have a noise equivalent absorption coefficient of 1.4 x 10(-8) cm(-1). Spectral simulations of the band indicate that the supersonic source produces rotationally cold (approximately 7 K) molecules. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/1.3427357 |