Hydrogel containing dexamethasone-loaded nanocapsules for cutaneous administration: preparation, characterization, and in vitro drug release study

Context: Our group previously reported the development of dexamethasone-loaded polymeric nanocapsules as an alternative for topical dermatological treatments. Objective: Our study aimed to prepare and characterize a hydrogel containing this system to improve the effectiveness of the glucocorticoid f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug development and industrial pharmacy 2010-08, Vol.36 (8), p.962-971
Hauptverfasser: Marchiori, M.L., Lubini, G., Dalla Nora, G., Friedrich, R.B., Fontana, M.C., Ourique, A.F., Bastos, M.O., Rigo, L.A., Silva, C.B., Tedesco, S.B., Beck, R.C.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Context: Our group previously reported the development of dexamethasone-loaded polymeric nanocapsules as an alternative for topical dermatological treatments. Objective: Our study aimed to prepare and characterize a hydrogel containing this system to improve the effectiveness of the glucocorticoid for cutaneous disorders. Methods: For the antiproliferative activity assay, a dexamethasone solution and D-NC were tested on Allium cepa root meristem model. D-NC were prepared by the interfacial deposition of preformed polymer. Hydrogels were prepared using Carbopol Ultrez® 10 NF, as polymer, and characterized according to the following characteristics: pH, drug content, spreadability, viscosity, and in vitro drug release. Results and Discussion: Nanocapsules showed mean particle size and zeta potential of 201 ± 6 and −5.73 ± 0.42 nm, respectively. They demonstrated a lower mitotic index (4.62%) compared to free dexamethasone (8.60%). Semisolid formulations presented acidic pH values and adequate drug content (between 5.4% and 6.1% and 100% and 105%, respectively). The presence of nanocapsules in hydrogels led to a decrease in their spreadability factor. Intact nanoparticles were demonstrated by TEM as well as by dynamic light scattering (mean particle size < 300 nm). In vitro studies showed a controlled dexamethasone release from hydrogels containing the drug associated to the nanocapsules following the Higuchi's squared root model (k = 20.21 ± 2.96 mg cm2 h1 2) compared to the hydrogels containing the free drug (k = 26.65 ± 2.09 mg cm2 h1 2). Conclusion: Taking all these results together, the hydrogel containing D-NC represent a promising approach to treat antiproliferative-related dermatological disorders.
ISSN:0363-9045
1520-5762
DOI:10.3109/03639041003598960