Evaluation and optimization of the new EBT2 radiochromic film dosimetry system for patient dose verification in radiotherapy
A new radiochromic film, the yellow Gafchromic EBT2, has been marketed as a drop-in replacement for the discontinued blue EBT film. In order to verify the manufacturer's claims prior to clinical use, EBT2 was characterized in transmission, and the less commonly used, reflection modes with an Ep...
Gespeichert in:
Veröffentlicht in: | Physics in medicine & biology 2010-05, Vol.55 (9), p.2601-2617 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new radiochromic film, the yellow Gafchromic EBT2, has been marketed as a drop-in replacement for the discontinued blue EBT film. In order to verify the manufacturer's claims prior to clinical use, EBT2 was characterized in transmission, and the less commonly used, reflection modes with an Epson Expression 10000XL A3 flatbed scanner. The red channel was confirmed to provide the greatest sensitivity and was used for all measurements. The post-irradiation darkening of the film was investigated, and the relative response was found to be dose dependent with higher doses stabilizing earlier than lower doses. After 13 h all dose levels had stabilized to within 1% of their value at 24 h. Uniformity of irradiated EBT2 films was within 0.8% and 1.2% (2SD of signal), in reflection and transmission modes, respectively. The light scattering effect, arising from the structure and thickness of EBT2, was found to give rise to an apparent scanner non-uniformity of up to 5.5% in signal. In reflection mode, differences of up to 1.2% were found between the signal obtained from a small film fragment (5 x 5 cm(2)) and the signal obtained from the same fragment bordered by extra film. Further work is needed to determine the origin of this effect, as there will be implications for reflection dosimetry of intensity modulated fields; reflection mode cannot yet be regarded as a viable alternative to transmission mode. Our results suggest that EBT2 film is a valid alternative, rather than a direct replacement for EBT film. |
---|---|
ISSN: | 0031-9155 1361-6560 |
DOI: | 10.1088/0031-9155/55/9/012 |