computational fluid dynamics model of viscous coupling of hairs

Arrays of arthropod filiform hairs form highly sensitive mechanoreceptor systems capable of detecting minute air disturbances, and it is unclear to what extent individual hairs interact with one another within sensor arrays. We present a computational fluid dynamics model for one or more hairs, coup...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Comparative Physiology 2010-06, Vol.196 (6), p.385-395
Hauptverfasser: Lewin, Gregory C, Hallam, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Arrays of arthropod filiform hairs form highly sensitive mechanoreceptor systems capable of detecting minute air disturbances, and it is unclear to what extent individual hairs interact with one another within sensor arrays. We present a computational fluid dynamics model for one or more hairs, coupled to a rigid-body dynamics model, for simulating both biological (e.g., a cricket cercal hair) and artificial MEMS-based systems. The model is used to investigate hair-hair interaction between pairs of hairs and quantify the extent of so-called viscous coupling. The results show that the extent to which hairs are coupled depends on the mounting properties of the hairs and the frequency at which they are driven. In particular, it is shown that for equal length hairs, viscous coupling is suppressed when they are driven near the natural frequency of the undamped system and the damping coefficient at the base is small. Further, for certain configurations, the motion of a hair can be enhanced by the presence of nearby hairs. The usefulness of the model in designing artificial systems is discussed.
ISSN:0340-7594
1432-1351
DOI:10.1007/s00359-010-0524-6