Origins, evolutionary history, and taxonomic distribution of alternative oxidase and plastoquinol terminal oxidase

Alternative oxidase (AOX) and plastoquinol terminal oxidase (PTOX) are related quinol oxidases associated with respiratory and photosynthetic electron transport chains, respectively. Contrary to previous belief, AOX is present in numerous animal phyla, as well as heterotrophic and marine phototrophi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comparative biochemistry and physiology. Part D, Genomics & proteomics Genomics & proteomics, 2006-09, Vol.1 (3), p.357-364
Hauptverfasser: McDonald, Allison E., Vanlerberghe, Greg C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alternative oxidase (AOX) and plastoquinol terminal oxidase (PTOX) are related quinol oxidases associated with respiratory and photosynthetic electron transport chains, respectively. Contrary to previous belief, AOX is present in numerous animal phyla, as well as heterotrophic and marine phototrophic proteobacteria. PTOX appears limited to organisms capable of oxygenic photosynthesis, including cyanobacteria, algae and plants. We propose that both oxidases originated in prokaryotes from a common ancestral di-iron carboxylate protein that diversified to AOX within ancient proteobacteria and PTOX within ancient cyanobacteria. Each then entered the eukaryotic lineage separately; AOX by the endosymbiotic event that gave rise to mitochondria and later PTOX by the endosymbiotic event that gave rise to chloroplasts. Both oxidases then spread through the eukaryotic domain by vertical inheritance, as well as by secondary and potentially tertiary endosymbiotic events.
ISSN:1744-117X
1878-0407
DOI:10.1016/j.cbd.2006.08.001